
Scheduling Intermediate Storage Multipurpose
Batch Plants Using the S-Graph

Javier Romero and Luis Puigjaner
Chemical Engineering Dept., Universidad Politècnica de Catalunya, E-08028 Barcelona, Spain

Tibor Holczinger and Ferenc Friedler
Dept. of Computer Science, University of Veszprém, Egyetem u. 10, H-8200, Veszprém, Hungary

A graph theoretical approach is proposed for the optimal scheduling of multipurpose
batch plants when constraints on intermediate storage allocation are met. The novel
S-graph representation is extended and combined with a set of rationales to consider
intermediate storage policy in production scheduling. This set of rationales accelerates
the optimization procedure, reducing the searching tree from the very beginning, without
losing optimality. It is assumed that the storage units can be commonly used throughout
the plant to achieve maximum plant flexibility. Therefore, the problem solved suggests the
more general batch-process transfer strategy, common intermediate storage policy (CIS).
This policy is suggested for more flexible use of intermediate storage units. The accuracy
of this proposed algorithm is tested with an exhaustive B&B search algorithm. The
methodology is compared with other CIS algorithms and is applied to solve several case
studies. The benefits of considering this kind of storage coupled with the use of the
proposed algorithm are discussed through motivating examples. © 2004 American Institute
of Chemical Engineers AIChE J, 50: 403–417, 2004
Keywords: scheduling, schedule-graph, intermediate storage, CIS, FIS

Introduction

Because of the staged nature of process equipment in batch
chemical plants, intermediate storage appears to be a vital
component for unblocking batch processes. Storage installed
between processing stages can help reduce idle times in these
stages by freeing them to process other batches and thus
increase equipment utilization and productivity of multiprod-
uct/multipurpose batch processes (Ku and Karimi, 1988). In
addition, intermediate storage constitutes an important compo-
nent in mitigating the material flow imbalance of feedstock
materials and intermediate products in order to meet finished-
product demand. However, increasing the storage facility is
penalized by a larger investment, a reduction in available

space, and the associated environmental issues because of more
cleanings, among other considerations. Hence, efficient man-
agement of storage facilities at the production scheduling stage
is necessary to improve at most performance of batch processes
using these facilities.

The rules governing the transfer of batches between process-
ing stages can be classified into six storage policies or kinds of
operations:

(1) The unlimited intermediate storage (UIS) policy. Here, it
is assumed that equipment units are available immediately after
processing a task. The intermediate product generated in this
task is removed from the equipment unit and stored, if neces-
sary, until the next task in the procedure starts its processing.
Therefore, unlimited storage between equipment units is as-
sumed to be available.

(2) The no-intermediate storage (NIS) policy. Within this
policy an equipment unit is not free until it finishes processing
and the intermediate product is transferred to the equipment

Correspondence concerning this article should be addressed to L. Puigjaner at
Luis.Puigjaner@upc.es.

© 2004 American Institute of Chemical Engineers

AIChE Journal 403February 2004 Vol. 50, No. 2

unit assigned to the next task in the procedure. It is not allowed
the use of intermediate storage units.

(3) The finite intermediate storage (FIS) policy. Within this
policy, finite-capacity storage tanks are available between
batch-processing units. The number of them between unit j and
unit k is fixed and given.

(4) The zero waiting (ZW) policy, where all products must
be transferred to the next equipment unit immediately after
processing.

(5) The mixed intermediate storage (MIS) policy represents
a process that combines the four storage policies mentioned in
1–4 at different stages.

(6) The common intermediate storage (CIS) policy was
formally defined by Jung et al. (1996) as a new category within
the FIS policy. Previous works (Wiede, 1984; Ku and Karimi,
1990) already pointed out that the “classical” definition of the
FIS policy was too restrictive for the chemical processing
industry. Hence, the “local FIS” and the “shared FIS” policies
were defined. In this work, the FIS policy in itself is considered
as a fixed interstage (unit) policy (the “local” FIS), and there-
fore intermediate storage is used between two predetermined
equipment units, and not between the units requiring unblock-
ing at a given instant in a schedule. Otherwise, the policy when
storage is commonly used throughout the whole process net-
work to accomplish a complete batch plant flexibility [shared
FIS, defined by Ku and Karimi (1990)] is the CIS policy. That
is, a number of storage units are available in the plant, and each
one is shared by several equipment units. Hence, within this
policy, intermediate storage will be used by some equipment
units as a function of the actual plant requirements, that is,
depending on a specific equipment unit requiring unblocking at
any given instant. Figure 1 shows a multipurpose plant scheme
operating with four equipment units with one common storage
unit shared among them.

In the UIS policy, therefore, unlimited storage may be avail-
able between every two adjacent units, while in the FIS mode,
only finite storage may be present, each storage unit being
dedicated to a specific type of equipment. In the NIS policy,
there is no intermediate storage available between units. With
the ZW policy, intermediate storage is needed only for the
simultaneous transfer of intermediates between equipment
units. From this point of view, FIS includes both UIS and NIS
policies. In addition, the MIS policy can be understood as the
FIS system with ZW blocks inserted (Kim et al., 1996).

From a mathematical point of view, it is important to dis-
tinguish between the FIS and CIS policies to show the differing

combinatorial complexity of both problems. The aim of the
CIS policy is to exploit the flexibility of interstage intermediate
storage. The use of intermediate storage units represents a
substantial investment in batch-process industries. This invest-
ment is compensated for by the large increase in productivity,
as it can be used to decouple periodic operations, to moderate
the effect of equipment failures, to increase the average equip-
ment unit occupation, and so on. Thus, very often the use of
storage units becomes a must in batch-process industries. Be-
sides, it seems wiser, having made such an investment on
facilities, to share them among as many equipment units as
possible in order to maximize their productivity and flexibility.
However, more complex scheduling algorithms and/or strate-
gies are needed. In this scenario, some pieces of equipment
would use the intermediate storage unit as a function of the
actual plant requirements. Two types of CIS system configu-
ration are looked at, the conventional pipe–valve and pump
intermediate-storage system, and the pipeless intermediate
storage system.

Production scheduling is an important area in chemical en-
gineering, and it has received significant attention (Reklaitis,
1991; Shah, 1998; Pinto and Grossmann, 1998). But general-
purpose models, based on MILP and MINLP formulations, run
out of proportion when trying to solve intermediate storage
constrained problems, since the number of different sequences
and possible intermediate storage allocations can be much
greater than in the case of NIS or UIS policies. Different
algorithms, based on MILP formulations, have been reported
for the optimal scheduling of multiproduct batch plants under
the different transfer policies (Kim et al., 1996; Jung et al.,
1996; Ku and Karimi, 1988, 1990). However, very little atten-
tion has been paid to the multipurpose case when the FIS or
CIS policy is contemplated. Kim et al. (2000) presented an
MILP model for optimal scheduling of nonsequential multi-
purpose batch processes (Voudouris and Grossmann, 1996)
with shared finite intermediate storage based on a set of logical
constraints. The algorithm presented in this work is in fact a
modification of the two coordinate representation methods
proposed by Pinto and Grossmann (1995). However, as will be
shown later (in Example 3 of this article), the results obtained
in the latter work are infeasible because the simultaneous
transfer of materials from equipment units to storage units is
not confined to the set of logical constraints of their model.

The selection of the representation technique in solving any
complex problem like scheduling is of major importance. The
widely used State Task Network (STN) representation (Kondili
et al., 1993) claims to provide a rigorous representation for
solving scheduling problems with intermediate storage. A
number of efficient models have been designed based on this
representation; Schilling and Pantelides (1996) presented an
extension of this representation to manage resources, and Iera-
petritou and Floudas (1998) presented a continuous-time rep-
resentation formulation based on STN, that handled interme-
diate storage but that only worked well in reduced scenarios.
Few computationally efficient algorithms have been specifi-
cally developed for the FIS or CIS policies for multipurpose
plants based on STN.

A large portion of the most recent research in scheduling
relates to the development of mathematical models. In this
article, however, we propose a graph-theoretical approach to
efficiently solve the scheduling of multiproduct/multipurpose

Figure 1. Process diagram for a CIS multipurpose plant.

404 AIChE JournalFebruary 2004 Vol. 50, No. 2

batch plants with intermediate storage. The idea of using graph
theory to solve scheduling problems has already been explored.
Mokashi and Kokossis (2002) proposed the optimization of
product distribution lines using graph representations. Here, the
S-graph representation recently introduced for solving the
scheduling of multipurpose batch plants is extended to consider
intermediate storage. The S-graph representation has the ad-
vantage of exploiting the problem-specific knowledge from the
very beginning to develop efficient algorithms. This represen-
tation and the basic algorithm for NIS production scheduling
are described at Sanmarti et al. (2002). Holczinger et al. (2002)
give and extension of the basic algorithm to consider multiple
batches of products in a more efficient way and to handle
complex recipes. This technique is successfully used in the
present work to derive efficient algorithms for solving sched-
uling problems under any of the scheduling policies.

The contents of this article are organized as follows. First,
the S-graph framework is presented and the basic algorithm for
optimal scheduling is introduced. Problem difficulties and for-
mulation are given next. Then, the optimization strategy for
production scheduling under CIS policy is presented. Finally,
the algorithm performance is tested using cases of different
complexity.

S-Graph Framework

Graph-theory often has been used in solving complex com-
binatorial problems, including scheduling. However, the sched-
uling applications have been restricted to the general job-shop
scheduling problem in the mechanical industry where interme-
diates can be stored between operations (i.e., the UIS policy is
assumed). The S-graph framework is a more sophisticated
graph representation that was initially designed to solve the
NIS case.

Mathematical formulation of S-graph

In an S-graph, two classes of arcs, the so-called recipe arcs
and schedule arcs, are specified. Therefore, an S-graph is given
in the form of G(N, A1, A2), where N, A1, and A2 denote the
sets of nodes, recipe arcs, and schedule arcs, respectively. A
nonnegative value, c(i, j), that denotes the weight of arc (i, j)
is assigned to each arc. In practice, if an arc is established from
node i to node j, the task corresponding to node j cannot start
its activity earlier than c(i, j) time after the task corresponding
to node i started. Specific types of S-graphs are identified for a
recipe (that is, recipe graph) and for a schedule of all tasks (i.e.,
schedule graph).

Recipe Graph. A recipe defines the order and type of tasks,
the material transfer between them, and the set of plausible
equipment units for each task. This type of information should
be represented by the graph of a recipe.

Let one node be assigned to each task (task node) and one to
each product (product node). An arc is established between the
nodes of consecutive tasks and from the nodes of tasks gener-
ating the products to the corresponding product node, which is
the associated weight specified by the processing times of the
tasks. If more than one batch of products is to be produced, the
task nodes, the product nodes, and the arcs are multiplied
appropriately. The resultant graph is called a task network,
where Nt and Np denote the set of its task nodes and product

nodes, respectively (Nt � Np � A). This task network can be
used as a recipe graph, assuming the incoming arcs of a node
express that the inputs of the corresponding task must be
available simultaneously.

Schedule Graph. A specific S-graph, termed schedule
graph, is introduced to describe a single solution of a schedul-
ing problem; one schedule graph exists for each feasible sched-
ule of the problem. S-graph G�(N, A1, A2) is called a schedule
graph of recipe graph G(N, A1, A), if all tasks represented in
the recipe graph have been scheduled by taking equipment-task
assignments into account. By an appropriate search strategy,
the schedule graph of the optimal schedule can be effectively
generated, as will be shown later.

The formal definition of schedule graph and the axioms that
G�(N, A1, A2) must satisfy in the NIS case have been pre-
sented elsewhere (Sanmarti et al., 2002).

S-graph representation for nonintermediate and
unlimited intermediate storage policies

When no intermediate storage is available (NIS case), an
equipment unit is not free after processing a task until the
material stored in it has been transferred to the equipment unit
assigned to the next task in the recipe. Arc or arcs express these
additional constraints imposed by the NIS policy. Each arc of
a schedule graph that does not belong to its recipe graph is a
schedule arc. Let �j denote the set of tasks that follow task j
according to the recipe. If equipment unit Ei is assigned to task
j and after completion to task k, then a zero-weighted arc (or an
arc whose weight is equal to the length of the changeover time,
if applicable) is established from each element of �j to k. This
kind of arc is called here an NIS schedule arc.

For the UIS case, the sequence of tasks to be processed can
be represented in a graph (Adams et al., 1988) where the task
sequence of all equipment units is defined by a set of conjunc-
tive arcs that connect the tasks assigned to the same equipment
unit. If equipment unit Ei is assigned to task j, and after
completion to task k, an arc, whose weight equals the process-
ing time plus the changeover time of the tasks, if applicable, is
established from j to k. This kind of arc is called here a UIS
schedule arc.

A feasible schedule for the UIS transfer policy may be

Figure 2. Optimal UIS and its corresponding NIS policies
S-graph representation of a batch process.

AIChE Journal 405February 2004 Vol. 50, No. 2

infeasible for the NIS case. For instance, Figure 2 shows an
optimal Gantt chart for UIS policy, but infeasible for NIS
policy. This Gantt chart shows that the transfer of material
from equipment unit E1 (task 1) to equipment unit E3 (task 2)
simultaneously to the transfer from E3 (task 5) to E1 (task 6)
can only be performed if an intermediate storage unit is avail-
able to store one of the products while the other is being
transferred. The correspondent NIS schedule graph is shown
(note that NIS schedule arcs are used). Here two cycles in the
graph identify infeasibility. Figure 2 also shows the schedule
graph of the same sequence of equipment units, but scheduled
with UIS schedule arcs. This sequence is now feasible (not
cyclic).

Basic algorithm for optimal scheduling

The recipe graph of a scheduling problem is always a sub-
graph of any of its schedule graphs with identical sets of nodes.
Extending the recipe graph with arcs in all possible ways by
taking into account the set of axioms reported in a previous
work (Sanmarti et al., 2002) and constraints on the assign-
ments, can therefore result in all schedule graphs. Conse-
quently, all schedule graphs and the related assignments can be
generated in a finite number of steps. This graph generation can
be performed conveniently by a branch and bound (B&B)
algorithm, where an equipment unit is assigned to a task and
the order of this task is determined in each branching step. In
this article the B&B of the basic representation is extended in
order to consider common storage units.

Extension of the S-Graph Representation to
Consider Intermediate Common Storage

In most batch chemical processes, intermediate storage units
are or may be used to increase process flexibility. The CIS
policy may include the FIS policy. This is the case when the
common storage inlets and outlets are connected to only one
equipment unit. Therefore, when solving the CIS policy we are
also considering the UIS, NIS, and FIS policies.

Within the CIS policy, an equipment unit is not free after
processing a task until the material stored in it has been
transferred either to the equipment unit assigned to the next
task in the recipe or, if necessary and possible, to an interme-
diate storage unit.

Problem definition

Five types of information may define a multipurpose batch-
scheduling problem when some interstage storage (IS) is pos-

sible: (a) the recipe of each product, (b) tasks to equipment
units assignment, (c) the amount to be produced per product,
(d) task to intermediate storage units assignment, and (e) the
equipment units to intermediate storage units assignment. The
first-three describe the basic scheduling problem. The task to
intermediate storage assignment refers to the type of materials
that each intermediate storage unit can store. The equipment
unit to storage unit assignment describes the physical connec-
tivity (hence, flexibility) of the common storage units.

Common Storage Description. The new required informa-
tion related to the IS policy is the equipment to intermediate
storage assignment and the task to intermediate storage assign-
ment. The equipment to intermediate storage assignment infor-
mation is included at:

(1) The set ISOk of intermediate storage units IS to which
each equipment unit k can transfer its intermediate products
(output materials).

(2) The set ISIk of intermediate storage units IS from which
raw materials can be transferred to equipment unit k (input
materials).

This information might be enough to properly model the
common storage connectivity from a single inlet–outlet to the
multiple inlet–multiple outlet intermediate storage unit (Canton
et al., 1999).

Specific information should also be given about each inter-
mediate storage:

(1) The storage capacity of each intermediate storage IS.
(2) The intermediate storage policy, that is, if the intermediate

storage is dedicated (used only by one material), shared (can be
used by more than one material at the same time), or shared
exclusive (can be used a long time by different materials, but only
a single material can be in the storage unit at a time).

(3) Tasks to intermediate storage assignment; that is, which
type of tasks can or cannot transfer their intermediates to each
common storage unit IS.

We can assume that the task to intermediate storage assign-
ment is somehow incorporated into the equipment to interme-
diate storage assignment. It is also assumed that if an equip-
ment unit is connected to a storage unit, this storage can store
its intermediate products. We will also assume that storages are
shared exclusively, as this is the most typical situation found in
chemical plants.

Figure 3. Extended S-graph representation: PT is the
task processing time, and TT the transfer
times.

Figure 4. S-graph representation of UIS and NIS policy
of a batch process.

406 AIChE JournalFebruary 2004 Vol. 50, No. 2

Storage Representation in the S-Graph. When scheduling
batch processes with storage facilities, not only is the sequence
of batches decided but so is which route will be used to carry
out each batch. Therefore, a kind of mixture of scheduling and
synthesis problem is solved. When common storage is consid-
ered, the recipe graph should define the order and type of tasks,
the set of equipment units of each task, and the feasibility of
using an intermediate storage between two adjacent tasks.
Since conventional graphs are unable to uniquely represent
process structures in synthesis (Friedler et al., 1992), a new
type of node will have to be added to the basic representation
in order to fully describe the possibility of storage.

In the S-graph representation, tasks are identified by a circle
designating the so-called T-type node and products are marked
by a dark circle designating the so-called P-type node. In the
extended S-graph that considers common storage, the transfer
rules between tasks are denoted by a simple arc if no interme-
diate storage is used or by a gray circle if storage is used, but
also designating a T-type node. In order to represent the chance
of choosing between these two paths (one using intermediate
storage and the other not) the so-called C-type nodes, desig-
nated by black boxes, are introduced. Figure 3 shows the
extended recipe-graph of a recipe in which material between
nodes i and j can be transferred either directly or, if necessary,
using the set of common storages CISi, j. The set, CISi, j, is
defined as a function of the set of intermediate storage units
from which task j can transfer its raw materials, ISITj, and the
set of intermediate storage units to which task i can transfer its
intermediate products, ISOTi:

CISi, j � �ISOTi � ISITj�. (1)

Set of rationales for storage unit necessity and
possibility

In order from the outset to reduce the number of partial
problems ending in infeasible alternatives derived from using
the intermediate storage, a set of rational rules is defined. Such
rationales are based on problem-specific knowledge and on the
fact that the S-graph is able to exploit this practical insight.
This set of concepts will later help to accelerate the optimiza-
tion procedure by rejecting nonoptimal and nonfeasible solu-
tions before exploring them.

Necessity of Intermediate Storage Rationale. It is easy to
determine when an intermediate storage is necessary in a
specific schedule graph. Axiom SG1 is established from the
basic S-graph representation (Sanmarti et al., 2002). This ax-
iom is true for any scheduling policy.

Axiom SG1. A sequence of tasks is feasible if its (partial)
schedule graph representation is noncyclic.

However, as has been previously established, a sequence of
tasks may not be feasible in the NIS policy but feasible in the
UIS or CIS policy. Figure 4 shows a Gantt chart of a feasible
UIS (or maybe CIS) policy, but one that is infeasible within the
NIS policy. Their S-graph representation under UIS and NIS

Figure 5. Feasible schedule graph of the case in Figure 4 thanks to the introduction of an intermediate storage; C-type
nodes are omitted.

Figure 6. Gantt-chart of the situations found in the non-
necessity rules 1 and 2.

Figure 7. Possibility of intermediate storage unit use. PT
is the task processing time, TT the transfer
time and SU, the setup time of an equipment
unit.
The overlapping_checking arc is represented by a dashed
arc.

AIChE Journal 407February 2004 Vol. 50, No. 2

policy is also shown. From this representation it can be seen
how a cycle in the NIS case identifies infeasibility.

Figure 5 shows that the cycle detected at the NIS case of
Figure 4 is broken by using intermediate storage.

Hence, an infeasible solution at NIS might be transformed
into a feasible one by introducing intermediate storage. Using
a cycle-detection algorithm, it can be detected when an infea-
sible (partial) schedule can be transformed into a feasible one
by introducing intermediate storage. Proposition 1 defines this
feasibility.

Proposition 1. Given the set � of nodes that form a cycle
� in an S-graph G(N, A1, A2). If for any schedule arc (i, j) (i,
j � �), i, (i � 1) belongs to �, then the S-graph G(N, A1, A2)
is not infeasible because of the precedent node of unavailability
of storage.

Demonstration. A cycle in an S-graph defines infeasibility.
This infeasibility may be disabled using intermediate storage.
In the extended S-graph representation, the intermediate stor-
age path implies to change a schedule arc starting at node i
(representing a task that can be performed by an equipment
unit) to one starting at node is (representing an intermediate
storage that can be performed by a storage unit). As the is node
is connected to node i � 1, if node i � 1 also belongs to the
original set of cycle nodes, the cycle will not be broken by
introducing the intermediate storage. If this happens for all
schedule arc (i, j) � �, then the infeasibility is not caused by
lack of storage. Hence, if arc (i, j) does not exist, cycle � will
not be broken if a common storage is available. On the other
hand, the S-graph can be transformed into a feasible one
introducing, if possible, a new T-type node representing inter-
mediate storage.

Nonnecessity of Intermediate Storage Rules. By using a set
of rules, it can be known when an intermediate storage being
used in a schedule graph is not necessary, either because we
can directly transfer intermediates to the next processing unit or
because we can store the intermediates in the same processing
unit or in the following prior next processing stage. Let i be a
batch stage of recipe �, let i 	 1 be the next stage to i of recipe
�. Let j be the next stage scheduled in the same equipment unit
as i in the schedule. Let k� be the preceding stage scheduled in
the same equipment unit as i 	 1, and let k be the following

stage in the recipe, ��, to k�. This set of rules can be summa-
rized as follows.

(1) If the earliest scheduled starting time of i 	 1 plus the
transfer time and setup time required by task i is smaller than
the latest starting time of j, i can transfer its intermediate
products to task i 	 1 without having to use an intermediate
storage, because if necessary it can store them in the same
equipment unit of i. Figure 6 (rule 1) shows this situation.

(2) If the earliest scheduled finishing time of k� plus its
required transfer time and setup time, to transfer its interme-
diates to k, is smaller than the latest finishing time of i, i can
also transfer its intermediates to task i 	 1 without having to
use any external intermediate storage unit. Figure 6 (rule 2)
shows this situation.

(3) If there is no task using the same equipment unit as i
scheduled after i (?/ j), or there is no task using the same
equipment unit as i 	 1 (?/ k�), then there is no requirement
for intermediate storage.

However, this set of rules does not recognize the necessity of
using intermediate storage when a set of equipment units
transfer their intermediates one to the other simultaneously. For
instance, if in Figure 6, k� would be the preceding task in a
recipe to j, the transfer represented would be impossible with-
out the aid of external intermediate storage. Nevertheless, the
necessity of the intermediate storage rule presented before will
help to determine when this rule does not recognize this situ-
ation. Combining both, it can be known which nodes of a given
schedule graph require intermediate storage for transferring
their intermediates.

Possibility of Intermediate Storage Rationale. A node can
use intermediate storage when transferring its intermediates
from task i to task j if CISi, j
 A.

On the other hand, given a schedule graph, it easily can be
checked if the use of common intermediate storage overlaps.
This checking can be performed by adding arcs from node j
where the ith use of an intermediate storage discharges its
products to the node of the (i 	 1)-th use of this storage. These
arcs are called overlapping_checking arcs. Figure 7 shows an
instance of this arc: dashed-arc from node j to node k�. This arc
checks whether task i� tries to storage its intermediates when
intermediates from i are still in storage unit IS1. The weight of
this arc is the transfer time required to transfer the intermediate
back to the equipment unit of task j plus the setup time required
to prepare the storage unit for the next intermediate product.

After adding all the possible overlapping_checking arcs be-
tween two consecutive uses of each intermediate storage unit,
we find the following situations:

(1) No cycle is generated, but makespan is affected after the
overlapping_checking arcs addition. In this case, the problem is
feasible.

(2) A cycle is generated, then the problem is infeasible
because of overlapping storage unit use. The only way to avoid
the overlapping is to remove the IS uses.

(3) No cycle is generated, but makespan is affected after the
arc addition. Figure 8 shows this situation. In this case, this
means that the schedule graph overlaps the IS use, but this
overlap is avoided by dragging some batches with an effect on
production makespan. In this situation, there is uncertainty in
the schedule-graph information as to which IS is, in fact, being
used first. Hence, both IS use orders should be considered.

Figure 8. Case where the addition of overlapping-
_checking arcs does not generate a cycle but
modifies makespan.

408 AIChE JournalFebruary 2004 Vol. 50, No. 2

Optimization strategy
Given all this information, the optimization procedure will

look for the optimal sequence of tasks (with lower production
makespan) to meet the specified requirements that allow, if
possible, the storage of some intermediate products.

The S-graph procedure will be applied in order to find the

optimal schedule. Within this framework, three strategies could
be possible:

● Exhaustive B&B, solving the problem considering all the
possibilities and paths between each two nodes, that is, at each
sequence step of each equipment unit, when a C-type node is
found, consider the transfer using intermediate storage and the

Figure 9. Examples of schedule graphs using the set of rationales for storage use and possibility.

AIChE Journal 409February 2004 Vol. 50, No. 2

transfer without using storage, and so generate two subprob-
lems.

● First solve the problem without using the possibility of
using intermediate storage, and introducing the storage path
when necessary to make feasible the schedule and whenever
possible to increase productivity.

● First solve the problem by always choosing the interme-
diate storage path at each P-type node and introduce NIS-
schedule arcs when the intermediate storage unit is not neces-
sary and/or not possible.

The exhaustive B&B strategy implies schedule equipment
units generating two subproblems from any partial problem:
One with a NIS transfer and another with UIS transfer. In this
way, when a complete schedule is obtained (schedule graph),
intermediate storage use is checked, adding the overlapping-
_checking_arcs from each ith use to the (i 	 1)-th use of each
storage unit. This strategy is not computationally efficient, as it
generates two subproblems from each P-type node that is
found. Hence, it can be used only to solve small problems.
However, as this strategy is not based in any rationale, opti-
mality is guaranteed.

As for the second strategy, it is difficult to determine when
the use of intermediate storage will increase final productivity
(reduce makespan) of a given S-graph. Therefore, it is dis-
carded.

As a computationally efficient optimization strategy, we
choose to initially solve the problem, always choosing, if it
exists, the intermediate storage path by expanding the tree with
UIS-schedule arcs and introducing NIS-schedule arcs when
storage is not necessary and/or not possible. Specifically, the
steps to follow are:

(1) Start branching partial problems by adding UIS-schedule
arcs in place of each P-type node. Otherwise, add a NIS-

schedule arc. With this, on the one hand, the use of storage is
probably assumed when not necessary and, on the other, their
use may overlap. Nevertheless, the lower bound of any of these
partial problems will always be lower than or equal to any
feasible one, and therefore there is no lose of optimality when
bounding the searching tree with these partial problems.

(2) Once a complete schedule is obtained, check to see
which nodes of those scheduled to use the storage paths need
to use common storage. Those nodes transferring their mate-
rials using the storage paths not requiring common storage are
changed to NIS-schedule arcs. In order to perform this, see if it
is necessary, or not, to use the intermediate storage rules
described earlier.

(3) Finally, check to see if tasks try to store their interme-
diates in the same storage at the same time, that is, if there is
infeasibility in the use of the storage unit. For this, the schedule
graph is extended to incorporate the storage nodes, as shown in
Figure 4, and the possibility of intermediate storage rationale
described earlier is used. When overlapping is detected, all
possible combinations of intermediate storage use removal are
considered, until a feasible IS use is found or the solution is
discarded (because it is infeasible).

Algorithm for computationally optimal CIS policy
scheduling

The optimal schedule is determined by applying the B&B
framework of the S-graph representation. Each node in the
B&B algorithm tree corresponds to a partial schedule. At the
root of the tree, the only earlier constraints of the product
recipes are applied, that is, the S-graph contains no arcs rep-
resenting task sequences in the units. For this graph, the back-
ward longest path algorithm can be applied to obtain a lower
bound of the makespan. Then, the tasks assigned to the differ-
ent units are sequenced one by one. Each time a task is
sequenced, a branch is generated in the tree, and the longest
path algorithm is applied again if no cycle is detected on the
graph. When the tree reaches the bottom, a complete schedule
has been obtained and a lower bound of the makespan can be
calculated. The Appendix shows the main procedure and the
different parts of the B&B algorithm.

The longest path algorithm assumes that unlimited waiting
times are allowed. If this is not the case, the lower bound of the
makespan has to be calculated using a linear programming (LP)
model. Later, in Example 1, a LP formulation to be solved in
this situation is shown.

Each time the lower bound of a partial schedule is greater
than the current upper bound, or that the partial schedule is not
acyclic, the branch of study is pruned.

This B&B algorithm is divided into the following procedures
(according to optimization strategy 3).

Table 1. Recipes Used for Algorithm Evaluation

Task

Product A Product B Product C Product D Product E Product F Product G Product H

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

1 U1 10 U1 5 U4 7 U4 5 U1 15 U1 10 U3 9 U4 5
2 U2 5 U3 7 U3 5 U6 7 U3 8 U2 20 U2 7 U3 17
3 U3 7 U6 3 U2 10 U2 3 U4 12 U3 5 U1 20 U2 7
4 U4 3 U5 3 U6 10 U5 10 U4 13

Figure 10. Example search tree.

410 AIChE JournalFebruary 2004 Vol. 50, No. 2

The Branching Procedure. The recipe graph serves as a
root of the searching tree. At any partial problem, one equip-
ment unit is selected and all child partial problems are gener-
ated through the possible assignments of this equipment unit to
unscheduled tasks. If available, the storage path is always
chosen. This procedure uses a backtracking search strategy.
When a cycle is detected, the study branch is pruned. The
Appendix shows this procedure. For simplicity, it is assumed
that there is exactly one equipment unit to perform each task.
There is a high degree of freedom in realizing the branching
algorithm to select the appropriate or most effective search
strategy.

The Bounding Procedure. The bounding procedure tests
the feasibility of a partial problem by first using a cycle search

algorithm. If the partial problem is acyclic, it returns a lower
bound for the makespan of all solutions that can be derived
from this partial problem.

The IS_necessity Procedure. At the end of the tree, where
each feasible solution is reached (schedule graph), the proce-
dure IS_necessity is called. For simplicity, it is assumed that at
most only one intermediate storage is connected to each input/
output of each equipment unit. In addition, there is not much
sense in connecting more than one storage unit to the same
equipment unit. This assumption makes the set of nodes re-
quiring external storage after processing, ISNi, single for all i
(i � 1, 2, . . . , n).

This procedure uses the nonnecessity concept described
earlier to identify which nodes are in fact using the inter-
mediate storage. If the nonnecessity rules consider a node
requiring storage to be nonrequiring, the resultant graph will
be cyclic. This is the case of a set of equipment units
simultaneously transferring their intermediates one to the
other (the case of Figure 6 where k� is the task in the recipe
that precedes j). If happens, the IS necessity rationale (called
the IS_cycle_breaking procedure) is used to identify which
nodes in fact require storage. Once all nodes requiring
intermediate storage are known, the IS_overlapping_check
procedure is called. The Appendix shows the IS_necessity
procedure.

The IS_cycle_breaking Procedure. This procedure is
called when a cycle is detected within the IS_necessity
procedure. This procedure looks for the set of nodes that by
using intermediate storage instead of direct transfer will
break the cycle. This procedure is based on the intermediate
storage necessity rationale introduced earlier. See the Ap-
pendix for the IS_cycle_breaking procedure when there is
only one storage shared among equipment units. In this
situation, using the storage 	 unit is the same wherever we
break the cycle by means of intermediate storage, and hence,
it is not necessary to search for all the possible cycle-
breaking points.

The IS_overlapping_check Procedure. This procedure
checks to see if the use of intermediate storage is infeasi-
ble, that is, if more than one equipment unit is trying to store
its intermediates in the same storage unit at the same time.
This procedure first adds storage arcs from the ith use of
every intermediate storage unit to its (i 	 1)-th use. If the
resulting graph is acyclic, the use of storages is feasible.
Otherwise, the cycle_remove procedure is called (see the
Appendix).

The Cycle–remove Procedure. Here, one intermediate
storage use is removed after considering all possible uses. For
each storage use, the procedure removes it and stores the new
schedule-graph for a new IS overlapping check (see the Ap-
pendix).

Table 2. Randomly Generated Input Data
for Algorithm Evaluation

Scenario

Number of Batches of Product

A B C D E F G H

1 1 1 1 1 0 0 0 0
2 0 0 0 0 1 1 1 1
3 0 1 1 0 2 0 0 0
4 0 0 0 1 0 1 1 1
5 1 0 1 0 1 0 1 0
6 1 1 1 0 1 0 2 0
7 1 0 1 0 1 0 0 1
8 1 0 1 0 1 0 1 1
9 2 1 0 0 0 1 1 0

10 2 1 0 0 0 0 0 2
11 2 2 0 0 0 0 0 1
12 1 2 0 1 0 0 0 0
13 1 0 2 1 0 0 0 0
14 0 0 0 0 3 0 0 1
15 0 0 2 0 1 1 0 0
16 1 0 0 0 0 1 0 2
17 0 2 0 0 0 0 3 0
18 2 0 0 0 2 0 1 0
19 1 1 0 0 0 0 0 2
20 1 1 0 0 1 1 0 0

Table 3. Exhaustive vs. Rationale-Based
Algorithm Evaluation

Scenario

Exhaustive B&B Rationale-Based B&B

Optimal
Makespan

Computation
Time (s)

Optimal
Makespan

Computation
Time (s)

1 38 0.1 38 0.02
2 63 3.3 63 0.09
3 51 0.1 51 0.02
4 54 0.1 54 0.02
5 46 0.5 46 0.03
6 70 218.4 70 1.41
7 50 0.8 50 0.04
8 51 10.9 51 0.44
9 62 100.3 62 0.73

10 63 34.5 63 0.36
11 53 42.1 53 0.49
12 35 0.1 35 0.01
13 48 0.6 48 0.02
14 66 0.2 66 0.00
15 60 0.8 60 0.11
16 62 3.0 62 0.09
17 76 4.8 76 0.15
18 70 0.6 70 0.10
19 56 0.4 56 0.03
20 61 6.1 61 0.10

Table 4. Processing and Transfer Times for Example 1

Product

Processing Time (u.) Transfer Time (u.)

U1 U2 U3 U4 U5 U6 U0 U1 U2 U3 U4 U5 U6

P1 10 15 20 12 8 11 2 2 2 2 3 2 1
P2 15 8 12 10 9 13 3 3 3 3 1 1 2
P3 10 22 9 5 6 9 2 4 2 2 1 2 2
P4 20 12 7 10 10 4 2 2 1 4 2 2 1

AIChE Journal 411February 2004 Vol. 50, No. 2

Illustrative example

This illustrative example consists of scheduling the produc-
tion of two batches of two different products using two equip-
ment units. The recipe graph is shown in Figure 9 (partial
problem No. 1). It is assumed that one common storage unit is
available to all equipment units. For clarity C-type nodes are
not shown. The search tree is given in Figure 10. The nodes of
the tree represent the partial problems. The branches are iden-
tified by the task sequence they introduce. The lower bound
associated with each of the feasible partial problems is shown
in boldface. The node of an infeasible partial problem is
crossed. The part of the searching tree not to be explored by the
optimization strategy is shown by dashed lines. The S-graphs
that correspond to these partial problems are shown in Figure 9.

The root of the search tree (partial problem No. 1) corre-
sponds to the recipe graph; the longest path, a lower bound of
its makespan, is 9. From this partial problem, two branches,
partial problem No. 2 and No. 3, are generated for the sequence
of equipment unit E1: 1–4 and 4–1, with lower bounds of 9
and 16, respectively. The branch with the best lower bound is
partial problem No. 2, and it is selected to continue expanding
the tree. From this partial problem, two branches (partial
problem No. 4 and No. 5) are generated: sequences 2–3 and 3–2
for equipment unit E2. Both partial problems are complete
schedules, that is, they may lead to a new upper bound for the
minimum makespan. Partial problem No. 4 represents a com-

plete schedule with a makespan of 16, then it checks to see
which of the nodes scheduled using the UIS arcs need to use
common storage (the necessity and nonnecessity of intermedi-
ate storage rationales are used for this). Those nodes not
requiring common storage are changed to NIS-schedule arcs.
Since no node requires storage, the graph does not need to be
extended to consider them (partial problem No. 4�). Now, the
lower bound of this partial problem is an upper bound for the
optimal makespan. Therefore, partial problem No. 3 is dis-
carded, as its bound is equal to the actual upper bound and all
of its descendants will have a bound equal or higher than it.
Partial problem No. 5 has a lower bound of 9. After checking
to see which nodes need to use common storage (using the
necessity and nonnecessity of intermediate storage rationales),
the nodes not requiring common storage are changed to NIS-
schedule arcs and, at the node requiring storage, node 3, the
graph is extended to consider it (partial problem No. 5�). Since
there is only one storage unit in use, it is not necessary to check
for storage unit overlap. Now, the lower bound of this partial
problem (9) is an upper bound for the optimal makespan.
Therefore, partial problem No. 4� is discarded. Partial problem
No. 3 would be the next branch to be expanded, from which
sequences 2–3 and 3–2 for equipment unit E2 would be gen-
erated. However, they are not to be explored, since the lower
bound of their ancestor (partial problem No. 3) is not better
(lower) than the current upper bound. Now, there are no more

Table 5. Setup Times for Equipment and Storage Units of Example 1

Product
Sequence
S(N–N)

Unit Setup Times (u.)

Product

Storage Setup Times (u.)

U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6

S(1–2) 3 1 2 4 2 3 P1 1 2 2 2 1 4
S(1–3) 2 2 1 3 1 4 P2 2 2 1 4 1 2
S(1–4) 1 4 2 2 3 2 P3 2 3 3 1 2 1
S(2–1) 4 1 2 3 2 2 P4 1 3 2 3 2 2
S(2–3) 1 1 4 3 1 1
S(2–4) 3 2 3 2 2 1
S(3–1) 2 1 4 3 3 1
S(3–2) 1 2 3 2 2 2
S(3–4) 4 2 2 2 2 1
S(4–1) 4 3 4 3 1 2
S(4–2) 1 4 3 3 4 2
S(4–3) 3 2 2 1 2 3

Figure 11. Optimal schedule graph of multiproduct Example 1; the weight of the arcs show the processing times,
transfer times, and setup times.

412 AIChE JournalFebruary 2004 Vol. 50, No. 2

nodes to expand, therefore, the optimal solution is given by
partial problem No. 5�.

Algorithm Performance

In order to show the accuracy of combining the set of
proposed rationales with the S-graph B&B, a set of randomly
generated input data is solved using the exhaustive optimiza-
tion strategy and the rationales-based strategy. In this evalua-
tion, six equipment units, U1, U2, U3, U4, U5, and U6, are
available to generate eight products, products A to H. The
recipes of the products are given in Table 1, which shows that
one common storage is available at the inlet and outlet of each
equipment unit. Twenty randomly generated scenarios for eval-
uation are given in Table 2.

The exhaustive B&B guarantees optimality. Table 3 shows
that the exhaustive and the rationales-based approaches always
reach the same optimal makespan. Therefore, as was expected,
it can be concluded that the set of rationales does not exclude
any optimal solution of the B&B exploration. Table 3 also
shows that the rationales-based B&B is considerably more
computational efficient than the exhaustive one.

Program Realizations and Applications

To evaluate the proposed graph-theoretical algorithm perfor-
mance, three examples are examined. The first one considers a
multiproduct plant producing four different products in six
processing units. Setup (switchover) times for units and stor-
age, transfer times, and zero waiting (ZW) blocks are taken into

account in this example. The next example contemplates a
multipurpose batch plant. The next case has already been
studied in the literature and here we refute the literature solu-
tions. The last example contemplates a large multipurpose case
study, where setup times are taken into account.

Example 1

This example was proposed by Jung et al. (1996). The plant
is a serial-flow shop system that has four batches carried out in
six equipment units, U1, U2, U3, U4, U5, and U6, with one
common storage unit IS1 shared among equipment units. Table
4 shows the data used for this example. Setup times as a
function of the equipment unit and recipe sequence have been
taken into account, as shown in Table 5.

A ZW block is assumed between units 3 and 5. In order to
consider the ZW block, the LP problem shown in Eq. 2 is
solved. This LP is used to bound partial problems instead of the
longest path algorithm that assumes unlimited waiting times

min MS

TIi � 0 � i

TFi � TIi � TOPi � TWi � i

TFi � TIi� � �i, i�� � A1

TFi�1 � TIi� � �i, i�� � A2

TWi � TWi
max � i

MS � TFi � i, (2)

where TIi and TFi are the initial time and ending time of each
process stage i; TWi

max is the maximum waiting time allowed,
equal to 0 if i belongs to the ZW block; TOPi the processing
time of task i: MS is the production makespan: A1 represents
the set of recipe arcs of a partial problem; and A2 stands for the
set of schedule arcs.

The optimal NIS production makespan is of 144 u. We
suggest that the common intermediate storage production
makespan is reduced to 136 u. This is the same value as
reported by Jung et al. (1996). However, our framework allows
storage of intermediates in the same equipment unit whenever
possible, a fact not contemplated in the original solution. For

Figure 12. Optimal Gantt charts of multipurpose Exam-
ple 2 when scheduling one batch of product
A, three of B, two of C, and one of D, when a
common storage unit is available, and when
no storage unit is available.

Figure 13. Infeasible optimal Gantt chart proposed by
Kim et al. (2000) and optimal feasible Gantt
chart according to the S-graph algorithm.

AIChE Journal 413February 2004 Vol. 50, No. 2

this reason, our actual solution differs from the one reported. In
our optimal solution, storage is required after processing prod-
ucts P2 and P3 in equipment unit U2. This storage is performed
at the common storage, since U2 is required for further pro-
cessing. Storage is also required after processing product P3 in
equipment unit U5, but here it is possible to perform this
storage in the same equipment unit, U5, a situation not con-
templated by Jung et al. Figure 11 shows the optimal schedule
graph of this example. In this figure we can see the differences
between the weight of the arcs among processing time, transfer
times, and setup times.

Example 2

In this example six equipment units, U1, U2, U3, U4, U5,
and U6, are available to generate four products, products A, B,
C, and D of Table 1. One common storage unit is available at
the inlet and outlet of each equipment unit. In this example,
transfer and setup times have been considered negligible, and
no waiting time limitations are assumed.

Figure 12 shows the optimal Gantt chart for producing one
batch of product A, three of B, two of C, and one of product P4
when common storage is available (optimal CIS schedule) and
in the case where no intermediate storage is allowed (optimal
NIS schedule). The optimal solution for CIS is achieved in 32
CPU seconds in a 1-GHz machine. By introducing the common
storage the production makespan is reduced from 56 u to 52 u.
The optimal CIS Gantt chart shows that the intermediate stor-
age unit is first used from the outlet of equipment unit U6 to the
inlet of U2, then from the outlet of U1 to the inlet of U3, then

from the outlet of U1 to the inlet of U3, and finally from the
outlet of U3 to the inlet of U6. Therefore, our algorithm
properly exploits the flexibility of the common storage unit to
increase productivity by 8%. The optimal UIS schedule has a
makespan of 51 u, and would be feasible if two common
storage units were available.

Example 3

In this example, the nonsequential multipurpose process
proposed by Kim et al. (2000) is solved using the S-graph
approach. The process produces four products using four units.
These products correspond to products E, F, G, and H of Table
1. The optimal solution reported by Kim et al. (2000) requires
a production makespan of 60 u obtained in 1.24 CPU s using an
IBM RS/6000 (model 350). Our optimal solution shows a
production makespan of 63 u, obtained in 0.08 CPU s of a
1-GHz machine. However, the solution reported in the work of
Kim et al. is not feasible (see Figure 13) because the transfer of
product B from unit 2 to unit 3 first requires the transfer of
product D to storage. But, in order to transfer product D,
product C needs to be transferred from storage to unit 2, which
requires the transfer of product B. This is impossible if no other
external storage unit is available. In the S-graph representation,
this infeasible situation is identified by a cyclic graph. Figure
14 shows our optimal feasible schedule graph and the schedule
graph of the solution proposed by Kim et al. (2000). It can be
observed that this second solution is feasible before adding the
overlapping–checking arcs, but after adding them, a cycle,

Table 6. Recipes Used for Example 4

Task

Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

Equip.
Unit

Time
(u.)

1 U1 100 U2 150 U13 280 U14 260 U5 350 U1 120 U2 300 U3 260
2 U2 450 U10 90 U8 300 U9 190 U10 120 U6 130 U7 50 U8 200
3 U14 400 U12 240 U3 250 U4 300 U15 420 U11 300 U12 250 U12 250

Figure 14. Infeasible schedule graph representation of the solution proposed by Kim et al. (2000) and optimal feasible
schedule graph according to the S-graph algorithm.

414 AIChE JournalFebruary 2004 Vol. 50, No. 2

generated in nodes 11, IS2, and 7 identifies infeasibility in the
storage unit use.

Example 4

Fifteen equipment units, U1 through U15, are available to
generate eight products, 1 to 8. The recipes of the products are
given in Table 6. The changeover time is 10 min for equipment
units U1, U12, and U13, 30 min for equipment units U8, U9,
U10, U11, U14, and U15, and 60 min for equipment units U2,
U3, U4, U5, U6, and U7. One storage unit to share among all
equipment units is available. Changeover time for the storage
unit is zero. The number of batches to be produced is given in
Table 7 for each product. The problem was solved in 132-s
CPU time on a AMD-Athlon 1 GHz machine. The resultant
makespan is of 1910 min. Figure 15 shows the corresponding
schedule graph.

Concluding Remarks

This study demonstrates that the proposed graph-theoretical
approach S-graph for scheduling multiproduct and multipur-
pose batch plants with shared storage is feasible and efficient.
The basic algorithm of the S-graph has been extended by first
introducing a new type of node in the graph that represents the
possibility of using intermediate storage (C-type node). In
order to efficiently solve the problem, the exploration tree is
reduced from the beginning by using a set of rationales. In the
proposed algorithm, the problem is initially solved by always
choosing the storage path if available. Once a schedule graph is
obtained, storage use necessity and graph feasibility are ana-
lyzed. This procedure guarantees optimality, as the lower
bound of any of the S-graphs obtained by always choosing the
storage path always will be lower or equal to any respective
feasible schedule graph. A set of rationales determines whether
a given schedule graph storage unit use is infeasible. If it is, all
of the possible IS unit allocations are considered for removal
until use of the IS unit in the schedule graph becomes feasible;
otherwise, the subproblem is discarded. This algorithm has
been tested in multiproduct and multipurpose batch-plant case
studies, showing the performance and accuracy of the method.

Table 7. Number of Batches of the Products

Product 1 2 3 4 5 6 7 8

Number of batches 1 1 1 4 3 3 1 4

Figure 15. Schedule graph of the optimal CIS solution of Example 4.

AIChE Journal 415February 2004 Vol. 50, No. 2

Acknowledgment
One of the authors (J.R.) acknowledges a grant from the Generalitat de

Catalunya. This research has been supported in part by the Hungarian
National Science Foundation OTKA T-029-309 and by the European
community (CHEM project n G1RD-CT-2001-00466).

Literature Cited
Adams, J., E. Balas, and D. Zawack, “The Shifting Bottleneck Procedure

for Job Shop Scheduling,” Manage. Sci., 34, 391 (1988).
Canton, J., M. Graells, and L. Puigjaner, “Modeling Intermediate Storage

for the Scheduling of Multipurpose Batch Chemical Processes Using
Event Operation Networks,” AIChE Meeting, Dallas, TX (1999).

Friedler, F., K. Tarjn, Y. Huang, and L. Fan, “Graph-Theoretic Approach to
Process Systhesis: Axions and Theorems,” Chem. Eng. Sci., 47, 1973 (1992).

Holczinger, T., J. Romero, L. Puigjaner, and F. Friedler, “Scheduling of
Multipurpose Batch Processes with Multiple Batches of the Products,”
Hungarian J. Ind. Chem., 30, 305 (2002).

Ierapetritou, M., and C. Floudas, “Short-Term Scheduling: New Mathe-
matical Models vs. Algorithmic Improvements,” Comput. Chem. Eng.,
22, S419 (1998).

Jung, J., H. Lee, and I. Lee, “Completion Times Algorithm of Multi-
Product Batch Processes for Common Intermediate Storage Policy (cis)
with Nonzero Transfer and Set-Up Times,” Comput. Chem. Eng., 20,
845 (1996).

Kim, M., J. Jung, and I. Lee, “Optimal Scheduling of Multi-Product Batch
Processes for Various Intermediate Storage Policies,” Ind. Eng. Chem.
Res., 35, 4058 (1996).

Kim, S., H. Lee, I. Lee, E. Lee, and B. Lee, “Scheduling of Non-Sequential
Multipurpose Batch Processes Under Finite Intermediate Storage Pol-
icy,” Comput. Chem. Eng., 24, 1603 (2000).

Kondili, E., C. Pantelides, and R. Sargent, “A General Algorithm for
Short-Term Scheduling of Batch Operations—i. MILP Formulation,”
Comput. Chem. Eng., 17(2), 211 (1993).

Ku, H., and I. Karimi, “Scheduling in Serial Multi-Product Batch Processes
with Finite Interstage Storage: A Mixed Integer Linear Program Formu-
lation,” Ind. Eng. Chem. Res., 27, 1840 (1988).

Ku, H., and I. Karimi, “Completion Time Algorithms for Serial Multiproduct
Batch Processes with Shared Storage,” Comput. Chem. Eng., 14, 49 (1990).

Mokashi, S., and A. Kokossis, “Maximum Oder Tree Algorithm for Optimal
Scheduling of Product Distribution Lines,” AIChE J., 48(2), 287 (2002).

Pinto, J., and I. Grossmann, “A Continuous Time Mixed Integer Linear
Programming Model for Short Term Scheduling of Multistage Batch
Plants,” Ind. Eng. Chem. Res., 34, 3037 (1995).

Pinto, J., and I. Grossmann, “Assignment and Sequencing Models of the
Scheduling of Process Systems,” Ann. Oper. Res., 81, 433 (1998).

Reklaitis, G., “Perspectives on Scheduling and Planning of Process Oper-
ations,” Proc. Int. Symp. on Process System Engineering, Montreal,
Canada (1991).

Sanmarti, E., T. Holczinger, L. Puigjaner, and F. Friedler, “Combinatorial
Framework for Effective Scheduling of Multipurpose Batch Plants,”
AIChE J., 48(11), 2557 (2002).

Schilling, G., and C. Pantelides, “A Simple Continuous-Time Process
Scheduling Formulation and a Novel Solution Algorithm,” Comput.
Chem. Eng., 20, S1221 (1996).

Shah, N., “Single and Multisite Planning and Scheduling: Current Status
and Future Challenges,” Foundations of Computer Aided Process Op-
erations, AIChE Symp. Ser., 94(320), 91 (1998).

Voudouris, V., and I. Grossmann, “MILP Model for Scheduling and
Design of a Special Class of Multipurpose Batch Plants,” Comput.
Chem. Eng., 20(11), 1335 (1996).

Wiede, W., “An Interactive Scheduling System for the Operation of Multi-
Product Plants,” PhD Diss., Purdue Univ., West Lafayette, IN (1984).

Appendix

This Appendix gives a detailed algorithm description of the
rationale-based CIS production scheduling method presented.
The Main procedure of the CIS scheduling algorithm:

procedure main
notation:

n: number of equipment units

Ni (i � 1, 2, . . . , n): set of tasks that can be performed
by equipment unit i

last_node: set of pairs (i, j) where i is an equipment unit
and j is a node.

PP � (G(N, A1, A2), bound, last_node, SOU N)
input: recipe-graph G(N, A1, A) and Ni (i � 1, 2, . . . , n)
begin

SET � A; bound � 0; SOU N � N1 � N2 � . . . �
Nn;

last_node � A; current_best � �;
Put (G(N, A1, A), bound, last_node, SOU N) into SET;

while SET
 A do
Select and remove element G from SET, being denoted

by PP; branching (PP);
end
end

Branching (PP) procedure:
procedure branching (PP)
comment: generates all child partial of partial problem PP
notation: graph(PP) � G(N, A1, A2)

bound(PP) � bound
last_node(PP) � last_node
SOU N(PP) � SOU N

begin
let EQ be an equipment unit that can be assigned to an

unscheduled node;
let SO � NEQ � SOU N(PP);
for all k � SO do

if there is no pair (i, j) � last_node � i � EQ then
Put(graph(PP), bound(PP), last_node(PP) �

{EQ, k},
SOU N(PP) \ k}) into SET;

else
let Go(N, A1, A2) � graph(PP);
for all (j, l) � A1 do

update c(j, l);
Go(N, A1, A2) � Go(N, A1, A2 � {(l, k)});

end
bounding(Go(N, A1 � A2), bound);
if bound � current_best then

if SOU N(PP) \ k � A then
IS_necessity(Go(N, A1, A2));

else
Put(Go(N, A1, A2), bound, last_node(PP) � {EQ,

k} \ {EQ, j}, SOU N(PP) \ k}) into SET;
end

end
end

end
end

IS_necessity(G) procedure:
procedure IS_necessity(G(N, A1, A2))
comment: checks the necessity of intermediate storage
notation: next(i): Node using the same equipment unit just

after node i.
prev(j): Node using the same equipment unit just before

node j.
dj: Longest distance of node j from all product nodes

when bounding G.
ISN: Set of nodes requiring to store their products.

416 AIChE JournalFebruary 2004 Vol. 50, No. 2

ISNis: Set of nodes requiring to store their intermediates
in storage unit is.

begin
for all i � ISN do

if next(i) � A then
ISN � ISN\i;

else
j � next(i);
if di	1 � dj then

ISN � ISN \ i;
end

end
if prev(i 	 1) � A then

ISN � ISN\i;
else

k � prev(i 	 1);
if (dk � c(k, k 	 1) � (di � c(i, i 	 1)) then

ISN � ISN\i;
end

end
end
update G(N, A1, A2) with ISN;
if bounding(G(N, A1, A2)) � � do

IS_cycle_break(G(N, A1, A2));
end
if �ISNis� � 1 @ is then

bounding(G(N, A1, A2), bound);
if bound � current_best then

update SET, current_best, solution;
end

else
ISSET � A;
IS_overlapping_check(G);

end
end

IS_cycle_breaking(G) procedure:
procedure IS_cycle_breaking(G(N, A1, A2))
comment: Procedure for breaking graph-cycles by introduc-

ing IS
notation: �; Set of nodes forming a cycle

ISN; Set of nodes requiring to store their intermediates
begin

for all (i, j) � A2 do
if i � � and CISi, j
 A and (i � 1) � � then

change (i, j) for the storage path;
ISN � ISN � (i � 1);
if cycle_search(G(N, A1, A2))
 cycle then

return;
end

end
end

end

IS_overlapping_check(G) procedure:
procedure IS_overlapping_check(G0(N, A1, A2))
comment: Checks timing feasibility of the storage units use

and if overlapping tries to solve the conflict
begin

bounding(G0) N, A1, A2), bound0);
put G0(N, A1, A2), bound0 into ISSET;
while ISSET
 A do

Remove element {G1(N, A1, A2), bound1} from ISSET;
for all use i � IS do

if there is i 	 1th use of storage then
is_overlap � false;
extend G1(N, A1, A2) by an arc from the ith use

of storage to its i 	 1th use;
if cycle_search(G1(N, A1, A2)) � cycle then

is_overlap � true;
cycle_remove(G1(N, A1, A2));

else
bounding(G1(N, A1, A2), bound);
if bound bound1 then

bound1 � bound;
is_overlap � true;

end
if is_overlap � true then

G2(N, A1 A2) � G0(N, A1, A2);
extend G2(N, A1, A2) by an schedule-arc from

the i	1th use of storage to its ith use;
if cycle_search(G1(N, A1, A2)) � cycle then

cycle_remove(G2(N, A1, A2));
else

bounding(G2(N, A1, A2), bound2);
if bound � current_best then

Put {G0(N, A1, A2), bound1} into ISSET;
end

end
end

end
if bound1 � current_best then

update SET, ISSET, current_best and solution
end

end

Cycle_removes(G) procedure:
procedure Cycle_remove(G(N, A1, A2))
comment: Removes IS use to resolve storage unit use over-

lapping
begin

for all i � � do
Gis(N, A1, A2) � G(N, A1, A2)
if i � ISN then

ISN \ i;
update Gis(N, A1, A2) with ISN;
if cycle_search(Gis(N, A1, A2))
 cycle then

bounding(Gis(N, A1, A2), bound);
If bound � current_best then

Put {Gis(N, A1, A2), bound} into ISSET;
end

end
end

end
end

Manuscript received Jan. 8, 2003, and revision received June 24, 2003.

AIChE Journal 417February 2004 Vol. 50, No. 2

