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E. ANGELELLI1, Á.B. NAGY2, M.G. SPERANZA1, AND ZS. TUZA3

1Department of Quantitative Methods, University of Brescia, C.da S. Chiara 50, I-25122 Brescia, Italy
2Department of Computer Science, University of Veszprém, Hungary. Research supported in part by the Hungarian

Scientific Research Fund, grant OTKA T029309
3Comp. and Autom. Inst., Hungarian Academy of Sciences, Budapest, Hungary and Department of Computer Science,

University of Veszprém, Hungary. Research supported in part by the Hungarian Scientific Research Fund,
grant OTKA T032969

ABSTRACT

In this paper we investigate a semi on-line multiprocessor scheduling problem. The problem is the classical
on-line multiprocessor problem where the total sum of the tasks is known in advance. We show an asymptotic
lower bound on the performance ratio of any algorithm (as the number of processors gets large), and present an
algorithm which has performance ratio at most

√
6+1
2 < 1.725 for any number of processors. When compared

with known general lower bounds, this result indicates that the information on the sum of tasks substantially
improves the performance ratio of on-line algorithms.
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1. INTRODUCTION

In the classical multiprocessor scheduling problem a set of tasks with given processing times is
available and has to be assigned to a set of identical processors with the objective of minimizing the
makespan, i.e. the maximum completion time on the processors. As the problem is NP-hard, exact
algorithms, heuristic and approximation algorithms are known. The performance of an approxi-
mation algorithm is measured through the worst-case ratio between the value of the makespan of
the algorithm and the minimum makespan.

In the on-line multiprocessor scheduling problem the tasks and their processing times are not
known in advance and, when a task becomes available, it has to be immediately assigned to one
of the processors before the next task becomes available, with the objective of minimizing the
makespan at the end of the instance. No information is known on the tasks not yet available.
An on-line algorithm assigns the incoming task to one of the already partially loaded processors
until the end of the instance. The performance of an online algorithm is measured through the
worst-case ratio between the value of the makespan of the algorithm and the minimum makespan,
which might be obtained if all the tasks were known in advance, as in the classical multiprocessor
scheduling problem. An additional information on the performance of an on-line algorithm is a
lower bound on the performance of any on-line algorithm. When the lower bound coincides with
the algorithm performance, the algorithm can be considered optimal. The currently best general
upper bound for the on-line multiprocessor scheduling problem is due to Fleischer and Wahl (2000)
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who present an algorithm with a competitive ratio which tends to about 1.9201 as the number of
processors tends to infinity. On the other hand, Albers has proved in Albers (1999) that no general
algorithm, for m ≥ 80, can perform better than 1.852. Faigle, Kern, and Turán (1989) proved that
no algorithm can have a competitive ratio better than 1.707 for any m ≥ 4.

The assumptions of pure on-line problems are often too pessimistic with respect to real problems
where in many cases partial information is available and can be exploited by appropriate algorithms.
We consider the on-line multiprocessor scheduling problem under the assumption that the sum of
the processing times of the tasks is known in advance. No additional information is known on the
tasks not yet available. As in the on-line multiprocessor scheduling problem an incoming task has
to be immediately assigned to one of the processors with the objective of minimizing the makespan
at the end of the instance. The problem has been studied, for the case of two processors, by Kellerer
et al. (1997) where an optimal algorithm with performance 4/3 has been presented. For the case of
three processors, an algorithm with performance 1+ 8

19 < 1.4211 has been introduced in Angelelli,
Speranza, and Tuza (submitted) together with a lower bound 1.3929 on the performance of any
algorithm.

The problem attacked in this paper is in some sense similar to the one studied by Azar and
Regev (2001) where the authors study an on-line bin-stretching problem which is equivalent to
minimizing the makespan in a multiprocessor scheduling problem under the assumption that the
off-line optimum is known in advance. Thanks to this strong assumption they obtain an algorithm
with competitive ratio equal to 1.625.

Variants of the on-line multiprocessor scheduling problem with known sum of the processing
times have also been studied for the case of two processors. In Angelelli (2000) an optimal algorithm
for the problem has been obtained for the case where a lower bound on the processing times of
the tasks is also known. The case where an upper bound, instead of a lower bound, is known on
the processing times of the tasks has been investigated in Angelelli, Speranza, and Tuza (2003).
He and Zhang (1999) studied the problem on two identical processor where the sum of the tasks
is not given in advance, but both a lower and an upper bound on the size of the tasks are known.
They proved that in this case the List Scheduling algorithm is optimal.

The aim of this paper is to study the performance of algorithms for the on-line multiprocessor
scheduling problem with known sum of the processing times, when the number of processors is
large. We show an asymptotic, with respect to the number of processors, lower bound on the
performance of any algorithm and present an algorithm which has a performance

√
6+1
2 < 1.725

for any number of processors. This performance considerably improves the 1.923 of the best known
algorithm for the pure on-line multiprocessor problem and the performance of any algorithm for
the on-line problem in the case of a large number of processors, as 1.852 is known to be a lower
bound for all m ≥ 80. This means that the knowledge of the sum of the processing times of the tasks,
which is a simple aggregated information, is sufficient to substantially improve the performance of
the on-line algorithms. For the sake of completeness we mention that a 5

3 -competitive algorithm
is claimed by Girlich, Kotov, and Kovalev (1998) in a technical report dated 1998, where no lower
bound is proposed. However, the proof in the original version (already submitted in 1998) is
incomplete, and to our best knowledge, no complete version has been prepared since then. Thus,
the 5

3 -competitiveness appears to be a conjecture and our paper contains the best upper bound
proved so far.

In Section 2 the asymptotic lower bound is presented while Section 3 is devoted to the description
and analysis of the on-line algorithm. Some conclusions are finally sketched.
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2. PROBLEM DEFINITION AND AN ASYMPTOTIC LOWER BOUND

A set M = {1, . . . , m} of m identical processors is available for the processing of the tasks. The
tasks are labeled with natural numbers, in the order of arrival, and we denote by ti the processing
time of task i. Given an online algorithm H, the makespan of the algorithm is denoted by T, while
the value of the optimal off-line makespan is denoted by T̃(T̃ ≤ T). The load of processor j at any
iteration of the on-line algorithm is denoted by Pj . In order to simplify numbers occurring in the
proofs, we assume without loss of generality, that

∑
i ti = 6m.

The performance of an on-line algorithm is measured by the competitive ratio. An on-line
algorithm H for a minimization problem is said to be r -competitive if the inequality T ≤ r · T̃
holds for any instance. The competitive ratio RH is defined as inf {r | H is r -competitive}. An
algorithm H is said to be optimal if no other algorithm has a better competitive ratio.

2.1. An asymptotic lower bound

Theorem 1. No algorithm can have a performance ratio asymptotically better than 1.565 as m →
∞.

Proof. We can view the proof as a game between two players, an algorithm H and an adversary
A. Player A sends out one task at a time and player H has to assign that task to a processor. Player
H aims at minimizing the makespan, while player A tries to maximize it. We discuss a strategy for
player A and show how, and to which extent, it prevents any player H from obtaining the optimal
assignment.

Player A chooses some x ∈ (0.5,1) and q ∈ (x, 1), then define ε = 2x+3q
m−2 . Note that x and q are

bounded quantities, thus, ε → 0 when m → ∞. In other words, ε can be made arbitrarily small if
an adequately large number m of processors is taken.

When the game begins, player A first sends out (m−2) tasks p1, p2, . . . , pm−2 of size 6(1 – ε)
followed by 2 tasks pm−1, pm of size 6x.

If player H assigns a pair of tasks to the same processor, we have basically two cases:

(a) p1 and pi for some iε(2, m), are assigned to the same processor. Then player A sends out
two tasks pm+1, pm+2 of size 6(1 — x) and (m — 2) tasks of size 6ε to complete the instance.
In this case T ≥ 6(1 − ε) + 6x, while T̃ = 6. Thus, T/T̃ ≥ 1 + x − ε.

(b) pm−1 and pm are assigned to the same processor. Then player A sends out two big tasks
pm+1, pm+2 of size 6(1 + q) and a set of small tasks to complete the instance. In this case
at least one of the two big tasks has to be assigned to the same processor as p1 and T =
6(1 − ε) + 6(1 + q), while T̃ = 6(1 + q). Thus, T/T̃ = 2+q−ε

1+q = 1 + 1−ε
1+q .

Otherwise H assigns the first m tasks to m distinct processors. Then player A sends out a task
pm+1 of size 6q.

If H assigns task pm+1 to the same processor as p1 , then player A sends out a task pm+2 of size
6(1 – q) and a set of small tasks to complete the instance. In this case T = 6(1 − ε) + 6q, while
T̃ = 12x. Thus, T/T̃ = 1 + 1+q−2x−ε

2x .

Otherwise H assigns task pm+1 to the same processor as pm. Then player Acompletes the instance
with two big tasks 6(1 + q), 6(1 + q). In this case T = 6(1 − ε) + 6(1 + q), while T̃ = 6(1 + q).
Thus, T/T̃ = 2+q−ε

1+q = 1 + 1−ε
1+q .
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We have shown that no algorithm can guarantee a performance ratio better than 1 + min
(x − ε, 1−ε

1+q ,
1+q−2x−ε

2x ). Since we are interested in the asymptotic behavior of the lower bound for
m large, we consider ε as negligible and focus our attention on the bound 1 + min (x, 1

1+q ,
1+q−2x

2x ).
Now, let us choose x = 1

1+q and x ≤ 1+q−2x
2x in order to keep the lower bound as large as possible.

From the latter conditions we obtain q = 1−x
x and x ≤ 1−2x2

2x2 , which holds for
x ≤ 1

6 (46 + 6
√

57)
1
3 + 2

3 (46 + 6
√

57)−
1
3 − 1

3 .

In conclusion, given a fixed x̃ = 1
6 (46 + 6

√
57)

1
3 + 2

3 (46 + 6
√

57)−
1
3 − 1

3 > 0.565 and a fixed
q̃ = 1−x̃

x̃ , the performance ratio of any algorithm is not better than 1 + x̃ + O( 1
m ). �

3. AN ALGORITHM FOR ANY NUMBER OF PROCESSORS

In this section we prove that there exists a c-competitive on-line algorithm for any number of
processors, with

c =
√

6 + 1
2

< 1.725.

Observe that this c is just

c = 5
3

(1 + δ)

where δ is the positive root of the equation
5
3

· 8 · (1 + δ)2 = 14 + 8δ.

Given a problem instance with
∑

i ti = 6m, we define as small tasks all the tasks with 0 < ti <

4 (1 + δ), and as big tasks all the tasks with 4(1 + δ) ≤ ti .

Theorem 2. There exists a
√

6+1
2 -competitive algorithm, for any number of processors.

We prove this theorem through the following steps. First, we describe an on-line algorithm H̄.

Then, we prove the following stronger statement, for the case in which the number of big tasks
does not exceed the number of processors:

Theorem 3. Under the assumption that there are at most m big tasks, the algorithm H̄ satisfies

T ≤ 5
3

· 6 · (1 + δ) ≤ cT̃ (1)

for all problem instances.

Finally, we will prove that the algorithm H̄ has competitive ratio not worse than c also on
instances where more than m big tasks occur.

3.1. The algorithm H̄

Let task i be the incoming task, that is the task to be scheduled. Let us define the following sets:
K = { j ∈ M: Pj + ti ≤ 10 (1 + δ), a big task has already been assigned to processor j}

F = { j ∈ M: Pj + ti ≤ 4(1 + δ)}
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The algorithm H̄ is defined as follows.

1. The task i is small

(a) If K �= ∅, then
k = argmax j∈K(Pj + ti )

(b) If K = ∅, and F �= ∅, then
k = argmax j∈F (Pj + ti )

(c) Else
k = argmax j∈M,Pj +ti ≤10(1+δ)(Pj + ti )

2. The task i is big

(a) If K �= ∅, then
k = argmax j∈K(Pj + ti )

(b) If there exists j with (Pj + ti ) ≤ 10(1 + δ), then
k = argmax j∈M,Pj +ti ≤10(1+δ)(Pj + ti )

(c) Else
k = argmin j∈M(Pj + ti )

3. Assign task i to processor k.

3.2. The case with at most m big tasks

As we assumed
∑

i ti = 6m, then T̃ ≥ 6 holds.
Therefore, in order to have competitive ratio at most c, it would suffice to prove

T ≤ 10(1 + δ). (2)

We shall prove this under the following two conditions:

1. ti ≤ 6(1 + δ) for all i
2. there are at most m big tasks.

It will be shown at the end why the condition 1 may be assumed without loss of generality,
hence completing the proof of Theorem 3. The situation where the condition 2 is dropped will be
considered in the next section, where we prove that c is a general upper bound on the competitive
ratio, proving Theorem 2.

Lemma 4. Algorithm H̄ can assign any small task to a processor without violating the bound
10(1 + δ).

Proof. Since the average load of processors in a complete schedule is 6, in each step there exists
a processor with load less than 6(1 + δ). A small item can always be assigned there in step (1c). On
the other hand, steps (1a) and (1b) obviously respect the bound. �

Lemma 5. Under the conditions 1 and 2 above, the algorithm can assign any big task to a processor
without violating the bound 10(1 + δ).
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Proof. Suppose for a contradiction that the algorithm cannot assign some big task ti without
violating the bound:

Pj + ti > 10(1 + δ) ∀ j ∈ M.

Because the number of big tasks is not greater than m, there exist some processors (may be more
than one) loaded with small tasks only. Let processor k be the one among them with minimum
current load. We have assumed

Pk + ti > 10(1 + δ)

and therefore

Pk > 4(1 + δ)

as no task exceeds 6(1 + δ).
Processor k was loaded with small tasks and so the bound 4(1 + δ) was violated. Let us con-

sider the small task i ′ that violated the bound 4(1 + δ) for Pk. The task i ′ has been assigned
by rule (1c). Now focus on the step when task i ′ was assigned. Denote by M1 ⊆ M\{k} the
set of processors with loads exceeding 4(1 + δ). Since task i ′ was assigned by rule (1c) to the
most loaded processor with load no more than 10(1 + δ) – ti ′ and task i ′ is small, the following
hold:

ti ′ + Pl > 10(1 + δ)
(3)

Pl > 6(1 + δ) ∀l ∈ M1.

On the other hand, for the set M2 = M\M1\{k} of processors (corresponding to the cases of
Pl < 4(1 + δ)) we have

ti ′ + Pl > 4(1 + δ) ∀l ∈ M2, (4)

because the rule (1b) was not applied. Let m1 and m2 denote the cardinality of M1 and M2

respectively.
Let us consider the processors in M2. We will show the following inequality

∑

l∈M2

Pl > 2(1 + δ)m2 − 2(1 + δ). (5)

Let us notice that there is at most one processor with Pl ′ ≤ 2(1 + δ), otherwise we would assign
the tasks of two such processors to one single processor, in step (1b).

If Pl ≥ 2(1 + δ) for all l ∈ M2, then (5) holds. Otherwise there is a processor, say l ′, with
Pl ′ < 2(1 + δ). Since its tasks have not been assigned to any other l ∈ M2, we have Pl > 2(1 + δ)
for all l ∈ M2\{l ′}, so that (5) follows.

Consider the tasks between task i ′ and task i. We claim that among those tasks, each processor
in M2 has been loaded with at least one big task. Indeed, each l ∈ M2 has been loaded with a
(new) task violating the bound 4(1 + δ), for otherwise the current task i could be assigned there
in (2b); and the new load could not be a small task, since it would be assignable to processor k (or
maybe a larger one) in step (1c).



ON-LINE MULTIPROCESSOR SCHEDULING PROBLEM WITH KNOWN SUM OF THE TASKS 427

Let us now estimate the sum of tasks.
∑

l∈M1

Pl +
∑

l∈M2

Pl + (Pk + ti ) > 6(1 + δ)m1 + (2(1 + δ)m2 − (1 + δ)2 + 4(1 + δ)m2)

+ (Pk + ti ) > 6(m1 + m2) − 2 + 10 > 6m (6)

This contradiction proves the assertion. �

Finally, we explain why the condition 1 given at the beginning of this section may be assumed
without loss of generality. If the longest task is larger, say max ti = t = 6(1+δ)+x for some x > 0,
then T̃ ≥ t while T ≤ 10(1 + δ) + x, i.e. the algorithm is even better than c-competitive.

3.3. The case with more than m big tasks

Theorem 6. Under the assumption that there are more than m big tasks, algorithm H̄ satisfies

T ≤ cT̃ (7)

for all feasible problem instances.

Proof. In this case any optimal schedule assigns at least two big tasks to the same processor,
therefore

T̃ ≥ 8(1 + δ)

Suppose first that ti ≤ 8(1 + δ) holds for all tasks i. Since in each step there is a processor loaded
less than 6, we obtain also in (2c) that

T < 6 + maxti ≤ 14 + 8δ.

Hence, by the choice of δ, the makespan does not exceed

14 + 8δ = 5
3

· 8 · (1 + δ)2 ≤ cT̃.

Finally, if the largest task has length t = 8(1+δ)+x for some x > 0, then the off-line optimum is
larger by at least x, while the on-line makespan is larger by at most x,hence the c-competitiveness
remains valid also in this case. �

Proof of Theorem 2. The assertion is a direct corollary of Theorems 3 and 6.

4. CONCLUSIONS

We have shown that, if the sum of the processing times of the tasks is known in advance, an algorithm
exists for the on-line multiprocessor scheduling problem with competitive ratio

√
6+1
2 < 1.725 for

any number of processors. An asymptotic lower bound slightly bigger than 1.565 has also been
obtained on the performance of any on-line algorithm. The reduction of the gap between these
two values remains an open problem. The ratio 1.725 substantially improves the best known
competitive ratio 1.923 for the pure on-line multiprocessor problem. The improvement is obtained
thanks to the information on the total processing time of the tasks of the instance. No detailed
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information on the tasks is assumed to be known in advance. It would be interesting to discover
whether other types of information on the instance may further improve the performance of an
algorithm for the on-line multiprocessor scheduling problem.
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