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Abstract

Cell robustness and complexity have been recognized as unique features of biological systems. Such robustness and complexity of

metabolic-reaction systems can be explored by discovering, or identifying, the multiple flux distributions (MFD) and redundant

pathways that lead to a given external state; however, this is exceedingly cumbersome to accomplish. It is, therefore, highly desirable

to establish an effective computational method for their identification, which, in turn, gives rise to a novel insight into the cellular

function. An effective approach is proposed for complementarily identifying MFD in metabolic flux analysis and multiple metabolic

pathways (MMP) in structural pathway analysis. This approach judiciously integrates flux balance analysis (FBA) based on linear

programming and the graph-theoretic method for determining reaction pathways. A single metabolic pathway, with the

concomitant flux distribution and the overall reaction manifesting itself as the desired phenotype under some environmental

conditions, is determined by FBA from the initial candidate sequence of metabolic reactions. Subsequently, the graph-theoretic

method recovers all feasible MMP and the corresponding MFD. The approach’s efficacy is demonstrated by applying it to the in

silico Escherichia coli model under various culture conditions. The resultant MMP and MFD attaining a unique external state reveal

the surprising adaptability and robustness of the intricate cellular network as a key to cell survival against environmental or genetic

changes. These results indicate that the proposed approach would be useful in facilitating drug discovery.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Today, biotechnology manifests itself in one form or
another in some sectors of wide-ranging industries
having global economic impact. These industries include
e front matter r 2005 Elsevier Inc. All rights reserved.
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healthcare, pharmaceutical, chemical, food and agricul-
tural industries. These industries are destined to be
benefited from the development of inexpensive and
higher-yield processes fueled by biotechnology. In this
connection, it is highly likely that the rapidly growing
field of quantitative analysis and modeling in metabolic
engineering would become a promising tool in elucidat-
ing the functions and characteristics of complex
biological systems essential for biotechnology. More-
over, the quantitative analysis and modeling will
certainly facilitate the prediction of cellular behavior

www.elsevier.com/locate/ymben
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of microorganisms under various perturbations, e.g., the
genetic modifications and/or environmental changes.

Several available approaches for such analysis and
modeling include structural (topological) pathway ana-
lysis (Clarke, 1988; Seressiotis and Bailey, 1988;
Mavrovouniotis et al., 1990; Liao et al., 1996; Simpson
et al., 1999; Schilling et al., 2000; Schuster et al., 2000;
Seo et al., 2001), metabolic flux analysis (MFA)
(Stephanopoulos et al., 1998), metabolic control analysis
(Kacser and Burns, 1973; Heinrich and Rapoport, 1974;
Fell, 1996), and dynamic simulation (Tomita et al.,
1999). Among them, MFA is most widely adopted for
rational design and in silico engineering of metabolic
pathways: the only information required is the stoichio-
metry of metabolic reactions and mass balances around
the metabolites under pseudo-steady state, or stationary,
assumption (Lee and Papoutsakis, 1999). Nevertheless,
the number of reactions almost always exceeds the
number of metabolites in any of the metabolic reaction
systems; as such, the algorithmic identification of all
metabolic fluxes is underdetermined (Klamt et al., 2002;
Stephanopoulos et al., 1998). The flux distribution,
therefore, has often been determined by means of flux
balance analysis (FBA) based on linear programming
(LP), thereby resulting in the flux distribution.

FBA has been firmly established theoretically (Varma
and Palsson, 1994a; Bonarius et al., 1997; Edwards and
Palsson, 1998; Sauer et al., 1998; Edwards et al., 1999;
Schilling et al., 1999). It has effectively dealt with the
metabolic networks of various kinds; however, several
critical issues remain unresolved (Edwards et al., 2002).
One such issue pertains to the uniqueness of the flux
distribution. In general, FBA provides one desired
physiological endpoint, e.g., the maximum growth rate,
and its corresponding flux distribution under some
culture conditions. It is uncertain, however, if this
solution is unique. The implementation of LP in FBA
frequently leads to multiple (or alternate) optima,
thereby signifying the existence of multiple solutions
corresponding to multiple flux distributions (MFD) (Lee
et al., 2000). In the biological sense, these MFD imply
the existence of redundant pathways in a metabolic
network; the difference among the multiple solutions is
attributable to the alternate equivalent sets of reactions,
which have been investigated in detail by Mahadevan
and Schilling (2003). This redundancy renders the
network robust against the breakdown of the compo-
nents, such as genes and enzymes, that disrupt some, but
not all, of the pathways capable of achieving the same
external state (Papin et al., 2002). To establish a rational
metabolic engineering strategy requires that identifica-
tion of the cellular state and prediction of the cellular
behavior be sufficiently precise. Nevertheless, such
identification and prediction are severely hindered by
the existence of MFD. This entails the establishment of
a method for identifying these MFD, which has been the
focus of only a handful of works to date (Lee et al.,
2000; Papin et al., 2002; Phalakornkule et al., 2001).

Lee et al. (2000) and Phalakornkule et al. (2001) have
opened a new avenue for exploring MFD. They have
resorted to the approach based on the recursive MILP
to enumerate all the multiple optimal solutions for the
given objective function in the MFA model. Recently,
the modified MILP approach has been applied to the
genome-size Escherichia coli model to generate the
limited number of multiple equivalent phenotype states
(Reed and Palsson, 2004). In fact, Schuster et al. (1999)
have indicated that the elementary mode analysis gives
rise to a systematic overview of the multitude of flux
distributions realizable in the metabolic system. In this
regard, Papin et al. (2002) have shown that the extreme
pathway analysis (Schilling et al., 2000) and elementary
flux modes (Schuster et al., 2000), both based on
the iterative algebraic algorithms, can serve the same
purpose.

The current work proposes a unified approach for
identifying MFD in MFA and multiple metabolic
pathways (MMP) in structural pathway analysis. This
approach combines the flux balance model based on LP
and the graph-theoretic method for reaction-pathway
identification based on P-graphs. At the outset, the
stoichiometric expression of an overall reaction, which is
the manifestation of the relationship among extracel-
lular metabolites, is obtained from a series of candidate
metabolic reactions as well as the objective function
specified by resorting to FBA. This is followed by the
determination of the MMP satisfying the resultant
overall reaction through the graph-theoretic identifica-
tion of reaction pathways. Eventually, the correspond-
ing MFD are recovered through FBA of each of the
resultant MMP. The proposed approach is applied to E.

coli to demonstrate its profound efficacy.
2. Flux balance analysis

In FBA, a metabolic reaction model is derived under
the stationary hypothesis on the basis of measured
fluxes. In deriving such a model, the relationships
among all metabolites and reactions are balanced in
terms of stoichiometry. Nevertheless, the resultant
balanced reaction model is almost always underdeter-
mined in calculating the flux distribution due to
insufficient measurements or to constraints (Klamt et
al., 2002). Thus, the unknown fluxes within the
metabolic reaction network are evaluated by LP, subject
to the constraints pertaining to mass conservation,
reaction thermodynamics, and capacity as described
elsewhere (Bonarius et al., 1997; Edwards et al., 1999;
Varma and Palsson, 1994a). In this work, FBA has been
implemented by program MetaFluxNet (version 1.6)
developed for quantitatively analyzing metabolic fluxes
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(Lee et al., 2003). The software is available from http://
mbel.kaist.ac.kr.

Note that the stoichiometric coefficient, in conjunc-
tion with the flux distribution determined by FBA, leads
to the net reaction balance equation; consequently, only
the relationship among the fluxes of extracellular
metabolites gives rise to the stoichiometric expression
of the overall reaction.
ADP FDP

Fig. 1. P-graph representation of two metabolic reactions, F6P+

ATP-ADP+FDP and FDP-F6P+PI in the glycolytic path-

way. m ¼ {F6P, FDP, ATP, ADP, PI}; o ¼ {1-, 2-} ¼ {({F6P,

ATP},{ADP,FDP}), ({FDP},{F6P,PI})}.
3. Identification of MMP

With the stoichiometric expression of the overall
reaction determined by FBA in hand, the proposed
unified approach identifies all the feasible MMP from
the initially proposed series of candidate metabolic
reactions by the graph-theoretic method for reaction-
pathway identification based on P-graphs originally
developed for catalytic reactions (Fan et al., 1999, 2001,
2002). The method comprises the unique graph-repre-
sentation of networks in terms of process graphs (P-
graphs), two sets of axioms, and a group of 3
combinatorial algorithms. It has been unambiguously
demonstrated that the method is applicable to the
identification of feasible biochemical, or metabolic,
pathways (Seo et al., 2001). This is not unexpected:
metabolic reactions are catalytic reactions with enzymes
serving as catalysts (Voet and Voet, 1995).

3.1. P-graph representation

An unambiguous network representation is required
in the biochemical pathway determination through the
synthesis of elementary reactions if the resultant net-
works are to be mathematically exact so that they can be
analyzed formally. The elementary-reaction steps or
metabolic reactions are directed; thus, every network
representing a reaction pathway including these steps
can be represented by directed graphs. In contrast,
conventional graphs are incapable of uniquely repre-
senting such networks (Fan et al., 1999, 2001, 2002; Seo
et al., 2001).

P-graphs are directed bipartite graphs (Friedler et al.,
1992, 1993, 1995). Let O be the set of metabolic-reaction
steps and M be the set of metabolites under considera-
tion; then, O � }ðMÞ �}ðMÞ; where O \ M ¼ +: If
(s, p) is a reaction step, i.e., ðs; pÞ 2 O; then s is called the
set of substrates, and p, the set of products of this
reaction step. Pair (M, O) is termed a P-graph with the
set of vertices M [ O; and the set of arcs fðx; yÞ: y ¼

ðs; pÞ 2 O and x 2 sg [ fðy;xÞ : y ¼ ðs; pÞ 2 O and x 2 pg:
In P-graph representation, metabolic reactions of which
the pathways are composed are symbolized by horizon-
tal bars; and metabolites, by circles. If a metabolite is an
input to or output from a metabolic reaction, the vertex
representing this metabolite is linked by an arc to or
from the vertex representing this metabolic reaction,
respectively, as illustrated in Fig. 1.

3.2. Formal graph-theoretic description of the problem

Here, a formal description is given of the problem of
the identification of MMP in the parlance of graph
theory in general and that of P-graph in particular
(Roberts, 1984; Friedler et al., 1992, 1993; Imreh et al.,
1996). Let a reaction-pathway-identification problem be
defined by triplet ðE;O;MÞ; where E is the overall
reaction; O ¼ fe1; e2; . . . ; eng; the finite ordered set of
metabolic reactions; and M ¼ fa1; a2; . . . ; alg; the finite
ordered set of metabolites. For any reversible reaction
step ei defined, its reverse step, denoted by �ei; is also
included in set O. It is assumed that

M \ O ¼ + and EeO [ M (1)

For the overall reaction, E, let o�ðEÞ and oþðEÞ denote
the set of starting substrates and final products,
respectively. Notice that a stoichiometric expression
for the overall reaction must be known a priori to graph-
theoretically identify any metabolic pathway. Fre-
quently, such an expression is unavailable for complex
or realistic metabolic pathways. In the proposed unified
approach, it is determined through FBA at the outset. If
oðEÞ is the set of extracellular metabolites consumed or
produced by the overall reaction, E, we have

oðEÞ ¼ o�ðEÞ [ oþðEÞ. (2)

Similarly, for any metabolic reaction step ei 2 O; let
o�ðeiÞ and oþðeiÞ denote the set of reactants and
products of ei, respectively. If oðeiÞ denotes the set of
metabolites consumed or produced by the reaction step
ei; we have

oðeiÞ ¼ o�ðeiÞ [ oþðeiÞ. (3)

http://mbel.kaist.ac.kr
http://mbel.kaist.ac.kr
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For any metabolites aj 2 M; let u�ðajÞ and u�ðajÞ denote
the set of metabolic reaction steps consuming and
producing aj, respectively. If uðajÞ denotes the set of
metabolic reaction steps consuming or producing aj, we
have obviously

uðajÞ ¼ u�ðajÞ [ u�ðajÞ. (4)

For any set of the reaction steps, o � O; let C�ðoÞ and
CþðoÞ denote the set of active metabolites consumed and
produced by any element of o, respectively; it follows
that

C�ðoÞ ¼
[
ei2o

o�ðeiÞ (5)

and

CþðoÞ ¼
[
ei2o

oþðeiÞ. (6)

If CðoÞ is the set of metabolites consumed or produced
by any element of o, we have

CðoÞ ¼ C�ðoÞ [CþðoÞ. (7)

For any set of metabolites m � M ; let j�ðmÞ and jþðmÞ

denote the set of reaction steps producing and consum-
ing any element of m, respectively; it follows that

j�ðmÞ ¼
[

aj2m

u�ðajÞ (8)

and

jþðmÞ ¼
[

aj2m

uþðajÞ. (9)

If jðmÞ is the set of reaction steps producing or
consuming any element of m, we have

jðmÞ ¼ j�ðmÞ [ jþðmÞ. (10)

For any set of reaction steps o � O; let X(o) denote the
set of opposite steps of the elementary-reaction steps
included in set o; then,

XðoÞ ¼ fei : �ei 2 og. (11)

Any P-graph representing a set of metabolites and
metabolic reaction steps is given by pair (m, o), where
o � O is the set of the reaction steps, and m � M is the
set of metabolites, where

CðoÞ � m. (12)

The set of vertices of the graph is

V ¼ o [ m, (13)

where any vertex corresponding to set m is termed M-
type, and any vertex corresponding to set o is termed
O-type. The set of arcs is

A ¼ A1 [ A2, (14)

where

A1 ¼ fðaj ; eiÞ : aj 2 m; ei 2 o; aj 2 o�ðeiÞg (15)
and

A2 ¼ fðei; ajÞ : ei 2 o; aj 2 m; aj 2 oþðeiÞg. (16)

In graphical representation, vertices of the O-type are
denoted by horizontal bars, and vertices of the M-type
are denoted by solid circles. It is worth noting that from
the standpoint of formal representation, P-graphs are
isomorphic to Petri nets which have been extensively
adopted for the analysis of metabolic pathways (Reddy
et al., 1996; Küffner et al., 2000; Oliveira et al., 2001).
Petri nets are bipartite directed graphs G ¼ ðV ;EÞ

composed of the two kinds of vertices, V1 and V2;
naturally V 1 [ V 2 ¼ V : The former is termed places
ðV 1 ¼ PÞ; and the latter is termed transitions ðV2 ¼ TÞ;
edges ed 2 Ed � ðV1 � V 2Þ [ ðV 2 � V 1Þ link the places
with the transitions, and vice versa (Murata, 1989).

As far as the static structure, the M-type and O-type
vertices in a P-graph can be regarded, respectively, as
disjoint sets of the places, P, and the transitions, T, in a
proper Petri net while edges Ed in Petri nets correspond
to the set of arc, A, in P-graphs. Obviously, a strong
correspondence exists between the P-graphs and Petri
nets; nevertheless, each plays individually a unique role
in theoretical discourse or in application.

Petri nets have been developed for representing and
exploring a system of concurrent events. An additional
term, i.e., token, is introduced to take into account the
dynamic behavior of the system of events. On the other
hand, P-graphs have originally been conceived to
describe the structure of a process system involving the
transformation of material species, especially for its
synthesis based on the algorithmic framework. The
procedure for implementing the algorithms based on the
P-graphs can be readily modified. Thus, the P-graphs
can be extended to a variety of network systems to
analyze these structural properties through syntheses.
3.3. Axioms

For any given overall reaction representing the
starting substrates (e.g., carbon sources) and the final
metabolic products, P-graph ðM ;OÞ composed of the
metabolic reactions in set O and the concomitant
metabolites in set M is combinatorially feasible if it
satisfies the set of 7 axioms of combinatorially feasible
metabolic reaction networks. Moreover, P-graph ðM ;OÞ

is a feasible metabolic pathway if it satisfies the set of 6
axioms of feasible metabolic pathways for the given
overall reaction. In the parlance of metabolic reaction
networks or pathways, these two sets of axioms can be
stated as follows:
(a) S
even axioms of combinatorially feasible metabolic

networks
(T1) E
very final product (target metabolite) is
represented in the network.
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(T2 E
very starting substrate (precursor metabolite) is
represented in the network.
(T3) E
ach metabolic reaction represented in the
network is defined a priori.
(T4) E
very metabolite represented in the network has at
least one path leading to a final product (target
metabolite) of the overall reaction.
(T5) E
very metabolite represented in the network must
be a substrate for or a product from at least one
metabolic reaction represented in the network.
(T6) A
 substrate of any metabolic reaction represented
in the network is a starting substrate (precursor
metabolite), if it is not produced by any metabolic
reaction represented in the network.
(T7) T
he network includes at most either the forward or
reverse step of each metabolic reaction represented
in the network.
(b) S
ix axioms of feasible metabolic pathways
(R1) E
very final product (target metabolite) is totally
produced by the metabolic reactions represented in
the pathway.
(R2) E
very starting substrate (precursor metabolite) is
totally consumed by the metabolic reactions
represented in the pathway.
(R3) E
very intermediate metabolite produced by any
metabolic reaction represented in the pathway is
totally consumed by one or more metabolic
reactions in the pathway, and every intermediate
metabolite consumed by any metabolic reaction
represented in the pathway is totally produced by
one of more metabolic reactions in the pathway.
(R4) A
ll metabolic reactions represented in the pathway
are defined a priori.
(R5) T
he metabolic network representing the pathway is
acyclic.
(R6) A
t least one metabolic reaction represented in the
pathway activates a starting substrate (precursor
metabolite).
It is noteworthy that all metabolites except extracellular
metabolites are active intermediates or simply inter-
mediates.
3.4. Algorithms

The two sets of axioms given above naturally give rise
to three efficient algorithms. The first is algorithm
Reaction Pathway Identification for Maximal Structure
Generation (RPIMSG) for generating the maximal
metabolic reaction network. The second is algorithm
Reaction Pathway Identification for Solution Structure
Generation (RPISSG) for generating the combinatorially
feasible metabolic pathways. The third is algorithm
Pathway BackTracking (PBT) for the final determination
of all the feasible metabolic pathways directly from the
maximal metabolic reaction network (Fan et al., 2002).
The maximal structure contains all combinatorially
feasible structures, i.e., reaction networks or pathways,
each leading from the starting substrates to the final
metabolic products, without violating axioms (T1)–(T7);
note that not every combinatorially feasible structure
constitutes a feasible pathway. Moreover, such a
structure must satisfy the mass conservation, as
expressed by axioms (R1)–(R3); must not contain a
cycle satisfying the principle of microscopic reversibility,
as expressed by axiom (R5); and must contain at least
one metabolic reaction step activating a starting
substrate, as expressed by axiom (R6). Fig. 2 contains
the computer program for implementing algorithm
RPIMSG in terms of the formal graph-theoretic
description of the metabolic-pathway-identification pro-
blem. The algorithm consists of two major parts,
reduction and composition. In the former, the metabo-
lites, i.e., starting substrates, final products, or inter-
mediates, and the metabolic reaction steps that must not
belong to the maximal structure are excluded from the
initial structure to the maximum extent possible on the
basis of Axioms (T1)–(T7). Obviously, all dead ends and
isolated reactions disconnected from the network can be
identified to preclude their participation in the forma-
tion of the network structure. Note that a dead end is an
intermediate metabolite either only produced or con-
sumed in the network (Reed et al., 2003). To initiate the
latter, i.e., composition, every step of each reaction,
which has survived the elimination and is deemed
plausible for inclusion, is properly identified on the
basis of Axiom (T3), and each final product is correctly
specified on the basis of Axiom (T1). Hereafter, the
maximal structure is constructed stepwisely by collect-
ing the reaction steps so as to satisfy Axioms (T4)
and (T5).

The algorithm for the solution structure generation,
algorithm RPISSG, yields the set of all combinatorially
feasible reaction networks from the maximal structure
of reaction networks. To drastically reduce the compu-
tational time necessary to ascertain if each combinato-
rially feasible reaction network or pathway is indeed
a feasible pathway in the light of Axioms (R1)–(R5),
a branch-and-bound-like algorithm termed Pathway-
Back-Tracking algorithm (algorithm PBT) has been
developed. The procedure for implementing algorithm
PBT, or equivalently the search through the enumera-
tion tree, is initiated at the maximal structure of
reaction networks obtained by virtue of algorithm
RPIMSG; this structure is at the root of the tree.
Algorithm PBT, facilitated by the subsidiary algorithms,
eventually generates the complete set of feasible
pathways and the multipliers of the resultant reaction
steps for a given reaction-pathway-identification pro-
blem. Herein, each feasible pathway attains the
same overall reaction by the linear combination of
reaction steps with multipliers or weights which are
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Fig. 2. Algorithm RPIMSG for the identification of multiple metabolic pathways.
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stoichiometric numbers. Note that the stoichiometric
numbers are defined for the elementary reactions
constituting the mechanism of a catalytic reaction
(Boudart and Djega-Mariadassou, 1984; Fan et al.,
1999, 2001, 2002). The metabolic reactions are nothing
but the elementary reactions in an enzymatically
catalyzed reaction system. Supporting material detailing
the detailed procedure for implementing algorithms
RPISSG and PBT is available at http://mbel.kaist.ac.kr/
publication/MEsuppl/.
3.5. Identification of MFD

FBA of MMP is straightforward; MMP is determined
by the aforementioned graph-theoretic method. Specifi-
cally, the objective function as given in FBA is
maximized or minimized by LP for each of the MMP
subject to the mass balance constraints in terms of all
the metabolites in the pathway and the substrate uptake
rate, thus yielding MFD.
4. Simple example for the identification of MFD and

MMP

A simple example is presented herein to illustrate the
current methodology and procedure (Fig. 3). The
example also provides numerical proofs for the validity
of the methodology and procedure

4.1. Flux balance analysis

At the outset of performing metabolic balance analysis,
it is visualized that a metabolic pathway exists, which
comprises a set of 7 metabolic reactions listed below.

R1 : A2
v1

B,

R2 : B�!
v2

2E,

R3 : E 2
v3

F ,

R4 : B2
v4

C,

http://mbel.kaist.ac.kr/publication/MEsuppl/
http://mbel.kaist.ac.kr/publication/MEsuppl/
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Fig. 3. Schematic procedure of the identification of multiple metabolic pathways and multiple flux distributions for a simple example. INPUT 1: an

example model network comprising 7 metabolic reactions; INPUT 2: an overall reaction determined by means of flux balance analysis (FBA);

METHOD 1: FBA; METHOD 2: graph-theoretic approach; SOLUTION: multiple metabolic pathways and concomitant flux distributions. See the

text for the detailed procedure.
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R5 : C �!
v5

2E,

R6 : B2
v6

D,

R7 : D�!
v7

E þ G.

For the sake of demonstration, the overall reaction of
this pathway is regarded as unknown; for many of the
complex or realistic metabolic pathways, this is indeed
the case. Note that B, C, D, and E are intermediate
metabolites, or simply, intermediates; A, F and G are
extracellular metabolites, metabolite A being the pre-
cursor, or substrate and F and G, the product; and vi;
i ¼ 1; 2; . . . ; 7; is the flux of metabolic reaction Ri; i ¼

1; 2; . . . ; 7: An example model network (INPUT 1) in
Fig. 3 depicts the initially hypothesized metabolic path-
way. For the pathway under consideration, the mass
balance around the system boundary in terms of moles of
intermediates gives rise to

B

C

D

E

1 �1 0 �1 0 �1 0

0 0 0 1 �1 0 0

0 0 0 0 0 1 �1

0 2 �1 0 2 0 1

2
6664

3
7775

v1

v2

v3

v4

v5

v6

v7

2
666666666664

3
777777777775

¼ 0 (17)
which, in turn, yields

B : v1 � v2 � v4 � v6 ¼ 0

C : v4 � v5 ¼ 0

D : v6 � v7 ¼ 0

E : 2v2 � v3 þ 2v5 þ v7 ¼ 0. (18)

These expressions are imposed as the constraints in
implementing LP for FBA of the hypothesized metabolic
pathway. Moreover, the production of final product F is
defined as the objective function to be maximized for a
given steady uptake rate of substrate A. As indicated in
Fig. 3 (METHOD 1), the maximization of the product
generation is equivalent to the maximization of flux v3
and that the numerical value of the rate of the substrate
uptake is specified to be no more than 2.5mmol/g
DCWh. The LP problem to be solved can be stated as
follows:

Maximize : v3

subject to :

B : v1 � v2 � v4 � v6 ¼ 0

C : v4 � v5 ¼ 0

D : v6 � v7 ¼ 0
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Table 1

Feasible reaction pathways of a simple example with the overall

reaction, A-2F (note that figures are stoichiometric numbers for the

corresponding feasible pathways)

Reactions Pathway 1 Pathway 2

R1: A-B 1 1

R2: B-2E 1

R3: E-F 2 2

R4: B-C 1

R5: C-2E 1

Overall reactiona A-2F A-2F

aEach of the metabolic reactions, Ri’s, i ¼ 1; 2; . . . ; 7; is to be

multiplied by the stoichiometric number to reach the overall reaction.

D.-Y. Lee et al. / Metabolic Engineering 7 (2005) 182–200 189
E : 2v2 � v3 þ 2v5 þ v7 ¼ 0.

v2; v3; v6X0

�1pv4; v5; v7p1

v1p2:5. (19)

Upon solution, we obtain

v1 ¼ 2:5 mmol=g DCW h

v2 ¼ 2:5 mmol=g DCW h

v3 ¼ 5:0 mmol=g DCW h

v4 ¼ 0:0

v5 ¼ 0:0

v6 ¼ 0:0

v7 ¼ 0:0

On the basis of one g DCW and 1h, these results imply
that

2.5mmol/g DCWh A-2.5mmol/g DCWh B,
2.5mmol/g DCWh B-5.0mmol/g DCWh E,
5.0mmol/g DCWh E-5.0mmol/g DCWh F.
Normalizing with the substrate uptake rate of

2.5mmol/g DCWh gives

A�!
~v1

1
B,

B�!
~v2

1
2E,

2E �!
~v3

2
2F .

Naturally, the corresponding overall reaction is

A ! 2F .

When some ~vi’s are non-integer rational numbers, all
~vi’s are multiplied by their least common denominator
(LCD) to transform them into integers. This is often the
case for realistic metabolic networks. It is worth noting
that the computational time to perform exact rational
arithmetic can be exceedingly large when the magnitude
of the constituent integers is huge in the large metabolic
networks. When inaccurate numerical coefficients
are acceptable, however, non-integer rational numbers
can be approximated by floating-point numbers, and
numerically rationalized, thus resulting in the relevant
integer numerator and denominator. INPUT 2 in Fig. 3
presents the resultant pathway and the normalized flux
distribution.

4.2. Identification of MMP

With the overall reaction (INPUT 2) in hand, all
feasible metabolic pathways can be recovered from the
initially hypothesized pathway (INPUT 1) comprising
the aforementioned metabolic reactions, R1–R7. This is
accomplished by resorting to algorithms RPIMSG and
PBT based on P-graphs. Initial structure in METHOD 2
of Fig. 3 shows the P-graph representation of the
initially hypothesized pathway corresponding to the
pathway’s diagram illustrated in INPUT 1. This P-
graph serves as the input to algorithm RPIMSG. In the
initial reaction pathway that appears on the left-hand
side of METHOD 2, notice that no arrows are indicated
on all the arcs connecting to reversible reactions, R1, R3,
R4 and R6, and thus, no selection can be made a priori as
to which step, forward or reverse, contributes to the
pathway proceeding from the substrate to the product.
Algorithm RPIMSG eventually generates the maximal
reaction network on the right-hand side of METHOD 2.
In this maximal reaction network, arrows are placed in
all the arcs, thereby indicating that the forward step
participates in the pathway. Moreover, R6 and R7 have
been eliminated in the reduction part of algorithm
RPIMSG. The resultant maximal reaction network
becomes the input to algorithm PBT, thereby generating
two feasible pathways, labeled as pathway 1 and
pathway 2; the former is identical to that obtained by
FBA. These two pathways are given in Table 1 and their
P-graphs are illustrated in SOLUTION of Fig. 3.

4.3. Identification of MFD

Naturally, the FBA of pathway 2 is straightforward.
Specifically, v3 is maximized by LP subject to the mass-
balance constraints in terms of moles of metabolites B,
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C, and E, and the substrate uptake rate of no more than
2.5mmol/g DCWh. This results in

v1 ¼ 2:5 mmol=g DCW h;

v3 ¼ 5:0 mmol=g DCW h;

v4 ¼ 2:5 mmol=g DCW h;

v5 ¼ 2:5 mmol=g DCW h

or equivalently, upon normalization,

R1 : A�!
~v1

1
B,

R3 : E �!
~v3

2
2F ,

R4 : B�!
~v4

1
C,

R5 : C �!
~v5

1
2E.

In summary, we have obtained 2 flux distributions
corresponding to 2 metabolic pathways. In other words,
we have MFD and MMP. Moreover, this illustrative
example unequivocally demonstrates numerically that
when normalized, the metabolic flux is identical to the
corresponding stoichiometric number for each meta-
bolic reaction.
Fig. 4. Overview of the metabolic network of E. coli model (Schilling et al., 20

and 46 intermediates) and 48 reactions (24 reversible and 24 irreversible react

the drain of precursors (11 intermediates) into E. coli biomass with their a

metabolite within the model; and 11 precursors for the production of biomass

intermediates to satisfy axiom R3 (see Tables 2 and 3).
5. Application to a model of E. coli metabolism

5.1. In silico representation of the E. coli metabolic

network

The in silico model of E. coli metabolism (Schilling et
al., 2001) is reconstructed to illustrate the proposed
unified approach for identifying MFD and MMP. Fig. 4
depicts an overview of the metabolic network of the
model. This network incorporates 52 metabolites (6
extracellular metabolites and 46 intermediates) and 48
metabolic reactions (see Tables 2 and 3). Embedded in
the metabolic network are the glycolytic pathway, the
pentose phosphate pathway (PPP), the tricarboxylic acid
(TCA) cycle, and the energy and redox metabolisms,
along with the necessary transport reactions for extra-
cellular metabolites. In addition, growth is quantified by
a biomass equation derived from the drain of biosyn-
thetic precursors (11 intermediates) into E. coli biomass
with their appropriate ratios (see Table 2).

Of extracellular metabolites, glucose is regarded as the
only carbon source consumed through the system while
metabolic products, i.e., ethanol and acetate, and
biomass are allowed to be secreted or accumulated;
however, all the intermediates are equally constrained.
Fueling of the metabolic network is rendered possible by
a constrained amount of glucose (o10mmol/g DCWh)
representing limited substrate availability, along with
unconstrained uptake/secretion routes for inorganic
01): The network consists of 52 metabolites (6 extracellular metabolites

ions); when growth is quantified by the biomass equation derived from

ppropriate ratios, biomass is regarded as an additional extracellular

and cofactors should be equally constrained in FBA and be regarded as
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Table 2

Metabolic reactions for the E. coli model

Enzyme Gene Rxn no. Reaction EC no.

Membrane transport (6) Trans

Phosphotransferase system Pts 1 GLCxt+PEP-G6P+PYR

Acetate transport 2 AC-ACxt

Ethanol transport 3 ETH-ETHxt

Oxygen transport 4 O22O2xt

Carbon dioxide transport 5 CO22CO2xt

Phosphate transport 6 PI2PIxt

Glycolysis (14) Gly

Phosphoglucose isomerase pgi 1 G6P2F6P 5.3.1.9

Phosphafructokinase pfkA 2 F6P+ATP-ADP+F16P 2.7.1.11

Fructose-1,6-bisphosphatase fbp 3 FDP-F6P+PI 3.1.3.11

Fructose-1,6-bisphophate aldolase fba 4 FDP2T3P1+T3P2 4.1.2.13

Triosphosphate isomerase tpiA 5 T3P12T3P2 5.3.1.1

Glyceraldehyde-3-phosphate

dehydrogenase

gapA 6 T3P1+PI+NAD2NADH+13PDG 1.2.1.12

Phosphoglycerate kinase pgk 7 13PDG+ADP2ATP+3PG 2.7.2.3

Phosphoglycerate mutase gpmA 8 3PG22PG 5.4.2.1

Enolase eno 9 2PG2PEP 4.2.1.11

Pyruvate kinase pyk 10 PEP+ADP-ATP+PYR 2.7.1.40

PEP synthase ppsA 11 PYR+ATP-AMP+PI+PEP 2.7.9.2

Pyruvate dehydrogenase lpdA, 12 PYR+COA+NAD 1.2.4.1,

aceEF -NADH+CO2+ACCOA 2.3.1.12

PEP carboxykinase pckA 13 OA+ATP-ADP+PEP+CO2 4.1.1.49

PEP carboxylase ppc 14 PEP+CO2-PI+OA 4.1.1.31

Pentose phosphate pathway (8) PPP

Glucose-6-phosphate dehydrogenase zwf 1 G6P+NADP2NADPH+D6PGL 1.1.1.49

6-Phophogluconolactonase pgl 2 D6PGL-D6PGC 3.1.1.31

6-Phosphogluconate dehydrogenase gnd 3 D6PGC+NADP-NADPH+CO2+RL5P 1.1.1.44

Ribose-5-phosphate isomerase rpiA 4 RL5P2R5P 5.3.1.6

Ribulose phosphate 3-epimerase rpe 5 RL5P2X5P 5.1.3.1

Transketolase 1 tktAB 6 R5P+X5P2T3P1+S7P 2.2.1.1

Transaldolase talB 7 T3P1+S7P2E4P+F6P 2.2.1.2

Transketolase 2 tktAB 8 X5P+E4P2F6P+T3P1 2.2.1.1

TCA cycle (9) TCA

Citrate synthase gltA 1 ACCOA+OA-COA+CIT 4.1.3.7

Aconitase acnA 2 CIT2ICIT 4.2.1.3

Isocitrate dehydrogenase icdA 3 ICIT+NADP2CO2+NADPH+AKG 1.1.1.42

2-Ketoglutarate dehydrogenase sucAB 4 AKG+NAD+COA 1.2.4.2,

lpdA -CO2+NADH+SUCCOA 2.3.1.61,

1.8.1.4

Succinate thiokinase sucCD 5 SUCCOA+ADP+PI 6.2.1.5

2ATP+COA+SUCC

Succinate dehydrogenase sdhABCD 6 SUCC+FAD-FADH+FUM 1.3.99.1

Fumurate reductase frdABCD 7 FUM+FADH-FAD+SUCC 1.3.99.1

Fumarase fumAB 8 FUM2MAL 4.2.1.2

Malate dehydrogenase mdh 9 MAL+NAD2NADH+OA 1.1.1.37

Dissimilation of pyruvate (3) DiPyr

Acetaldehyde dehydrogenase adhE 1 ACCOA+2 NADH22

NAD+COA+ETH

1.2.1.10

Phosphotransacetylase pta 2 ACCOA+PI2COA+ACTP 2.3.1.8

Acetate kinase ackA 3 ACTP+ADP2ATP+AC 2.7.2.1

Energy/redox metabolism (8) Egy

NADH dehydrogenase I nuoA 1 NADH+Q-NAD+QH2+2 HEXT 1.6.5.3

Cytochrome oxidase bo3 cyoA 2 2 QH2+O2-2 Q+4 HEXT 1.10.2.2,

1.9.3.1

Pyridine nucleotide transhydrogenase pntAB 3 NADPH+NAD-NADP+NADH 1.6.1.1

Succinate dehydrogenase complex sdhABCD 4 FADH+Q-FAD+QH2 1.3.5.1

Pyridine nucleotide transhydrogenase pntAB 5 NADP+NADH+2 HEXT 1.6.1.1

-NADPH+NAD

D.-Y. Lee et al. / Metabolic Engineering 7 (2005) 182–200 191
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Table 2 (continued )

Enzyme Gene Rxn no. Reaction EC no.

F0F1-ATPase atpABCD 6 ADP+PI+3 HEXT - ATP 3.6.1.34

Adenylate kinase adk 7 ATP+AMP22 ADP 2.7.4.3

ATP drain 8 ATP-ADP+PI

Growth flux (1) 41.3 ATP+3.5 NAD+18.2 NADPH+0.2

G6P+0.1 F6P+0.9 R5P+0.4 E4P+0.1

T3P1+1.5 3PG+0.5 PEP+2.8 PYR+3.7

ACCOA+1.8 OA+1.1 AKG

-41.3 ADP+41.3 PI+3.5 NADH+18.2

NADP+3.7 COA+BIOMASS

Table 3

Abbreviations of metabolites in the reactions of the E. coli model

Abbreviation Compound

Extracellular metabolites (7)

GLCxt Glucose (external)

ACxt Acetate (external)

ETHxt Ethanol (external)

O2xt Oxygen (external)

CO2xt Carbon dioxide (external)

PIxt Phosphate (external)

BIOMASS Biomass

Intracellular metabolites (46)

13P2DG 1,3-P- d glycerate

2K3D6PG 2-Dehydro-3-deoxy-6-P-gluconate

2PG 2-P- d glycerate

3PG 3-P- d glycerate

AC Acetate

ACCOA Acetyl-CoA

ACTP Acetyl-phosphate

ADP Adenosine diphosphate

AKG A-Ketoglutarate

AMP Adenosine monophosphate

ATP Adenosine triphosphate

CIT Citrate

CO2 Carbon dioxide

COA Coenzyme A-SH

D6PGC d-6-Phosphoglucono-d-lactone
D6PGL d-6-Phosphogluconate

E4P Erythrose 4-phosphate

ETH Ethanol

FDP Fructose 1,6-diphosphate

F6P Fructose 6-phosphate

FAD Flavin adenine dinucleotide

FADH

FUM Fumarate

G6P Glucose 6-phosphate

HEXT External H+

ICIT Isocitrate

MAL Malate

NAD Nicotinamide adenine dinucleotide

NADH

NADP Nicotinamide adenine dinucleotide phosphate

NADPH

O2 Oxygen

OA Oxaloacetate

PEP Phosphoenolpyruvate

PI Phosphate (inorganic)

PYR Pyruvate

Q Ubiquinone

Table 3 (continued )

Abbreviation Compound

QH2 Ubiquinol

R5P Ribose 5-phosphate

RL5P d-Ribulose 5-phosphate

S7P d-Sedoheptulose-7-P

SUCC Succinate

SUCCOA Succinyl-CoA

T3P1 Glyceraldehyde-3-phosphate

T3P2 Dihydroxyacetone phosphate

X5P Xylulose-5-phosphate
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phosphate, oxygen and carbon dioxide. (Note: g DCW
stands for grams dry cell weight.)

Based on the hypothesis that biological functions in
the cell evolve optimally under the given environmental
conditions (Bialy, 2001; Edwards et al., 2002), the cell
behavior can be predicted under various culture condi-
tions by means of FBA. Herein, three scenarios or cases
representing different culture conditions are considered
for physiologically meaningful results by setting some of
the fluxes as the desired targets (objective functions)
within the defined system. In the first, the growth flux
generating biomass is maximized under nutritionally
rich growth conditions (Varma and Palsson, 1994b). In
the second, the generation of acetate is maximized at a
limited level of oxygen (slightly anaerobic conditions)
(Majewski and Domach, 1990; Varma et al., 1993). In
the third, the ethanol production is set as the desired
target to be maximized within the defined system under
highly oxygen-limited or anaerobic conditions (Wong et
al., 1999; Varma et al., 1993). In the latter two cases, the
use of non-growing cells is assumed for the production
of metabolic products to obtain the maximum possible
yield.

5.2. Maximization of biomass production

For this first case (maximization of biomass produc-
tion), the objective function to be maximized in FBA is
the growth flux of the biosynthetic routes involving the
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aforementioned 11 precursors (intermediates) for the
cell growth in terms of biomass production as indicated
in the upper right-hand corner of Fig. 4; the availability
of glucose is specified to be less than 10mmol/g DCWh.
The maximization has yielded the theoretical maximum
growth rate of 1.05 g biomass/g DCWh, which is in
accord with the available result (Schilling et al., 2001).
Moreover, the net reaction balance in Table 4 is
obtained from the net transport flux vector that is
calculated from the resultant flux distribution given in
Table 5 in conjunction with the stoichiometric coeffi-
cients. Fig. 5a exhibits the flux distribution normalized
by the glucose uptake rate of 10mmol/g DCWh, thus
resulting in the normalized net reaction balance

GLCxtþ 0:390PIxtþ 1:376O2xt

! 0:105Biomassþ 1:498CO2xt.

The overall reaction is obtained by rendering the
stoichiometric coefficients in the above expression to
be integers by multiplying all the coefficients with their
LCD, thereby giving rise to

58610GLCxtþ 80667O2xtþ 22866PIxt

! 87774CO2xtþ 6180BIOMASS.

Fig. 6 illustrates the P-graph representation of the
pathways corresponding to the glycolytic pathway, PPP
and TCA cycle of the E. coli model. This P-graph,
combined with the pathways pertaining to the energy
and redox metabolisms exhibited in the middle of the
right-hand side of Fig. 4, serves as the input to algorithm
RPIMSG for generating the maximal metabolic reaction
network. In general, all feasible metabolic pathways,
i.e., MMP are generated via algorithm PBT with the
maximal metabolic reaction network as its input.
Table 4

Net reaction balance equations and the resultant overall reactions of the E.

Cases Conditions for FBA Net reaction balance and corresponding

Case 1 Max. Biomass production 10.0GLCxt+3.90PIxt+13.76O2xt-1.0

Limited glucose uptake OR: 58610GLCxt+80667O2xt+22866P

(o10mmol=g DCWh) -87774CO2xt+6180BIOMASS

Case 2 Max. ACxt production 10.0GLCxt+10.0O2xt-10.0ACxt+10.

Limited glucose uptake OR: GLCxt+O2xt-ACxt+ETHxt+2

(o10mmol=g DCWh)

Limited oxygen uptake

(o10mmol=g DCWh)

Case 3 Max. ETHxt production 10.0 GLCxt - 20.0ETHxt+20.0CO2xt

Limited glucose uptake OR: GLCxt - 2ETHxt+2CO2xt

(o10mmol=g DCWh)

Disallowed oxygen uptake

(¼ 0mmol=g DCWh)

Abbreviation: ACxt, acetate (external); CO2xt, carbon dioxide (external);

(external); PIxt, phosphate (external); FBA, flux balance analysis; MMP, mu
aPC (Pentium-IV 1.8GHz, 768 MB RAM).
Nevertheless, only a single metabolic pathway is
recovered for the case under consideration; in fact, this
pathway is identical to that recovered by FBA at the
outset. Naturally, FBA of this pathway gives rise to the
same flux distribution as that obtained at the outset.
5.3. Maximization of acetate production

For this second case (maximization of acetate
production), the objective function to be maximized in
FBA is the acetate production which can be discerned in
the middle portion of Fig. 4. In addition to the
limitation of glucose availability, the oxygen supply
level is specified at 10mmol/g DCWh (see Table 4),
which signifies slightly anaerobic conditions. Under
these conditions, the theoretical maximum acetate
production rate of 10mmol/g DCWh has been obtained
in the absence of cell growth. The resultant flux
distribution is given in Table 5, which gives rise to the
net reaction balance given in Table 5. Fig. 5b exhibits
the flux distribution normalized by the glucose uptake
rate of 10mmol/g DCWh. This, in turn, leads to the
overall reaction,

GLCxtþO2xt ! ACxtþ ETHxtþ 2CO2xt,

which signifies the external state.
Based on the above overall reaction, eight feasible

metabolic pathways have been recovered via algorithms
RPIMSG and PBT for the graph-theoretic pathway
identification (MPI) from the aforementioned E. coli

network model and concomitant metabolic reactions.
Subsequently, the corresponding 8 flux distributions are
obtained through the FBA of each of the 8 metabolic
pathways (see Table 5).
coli metabolic model under various culture conditions

overall reaction (OR) MMP & MFD

Numbers identified Computational time (s)a

5Biomass+14.98CO2xt 1 0.04

Ixt

0ETHxt+20.0CO2xt 8 0.241

CO2xt

4 0.111

ETHxt, ethanol (external); GLCxt, glucose (external); O2xt, Oxygen

ltiple metabolic pathways; MFD, multiple flux distributions.



ARTICLE IN PRESS

Table 5

Resultant flux distributions for three cases and the corresponding multiple flux distributions (unit: mmol/g DCWh)

Flux Case 1a Case 2b Case 3c

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6 Solution 7 Solution 8 Solution 1 Solution 2 Solution 3 Solution 4

Trans1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Trans2 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Trans3 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 20.00 20.00 20.00 20.00

Trans4 �13.76 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00

Trans5 14.98 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Trans6 �3.90

Gly1 1.33 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Gly2 6.09 10.00 40.00 10.00 10.00 66.67 10.00 10.00 10.00 10.00 30.00 10.00 10.00

Gly3 30.00 56.67 20.00

Gly4 6.09 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Gly5 �6.09 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00 �10.00

Gly6 14.30 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Gly7 14.30 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Gly8 12.72 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Gly9 12.72 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Gly10 40.00 10.00 10.00 10.00 10.00 10.00 10.00 66.67 10.00 10.00 10.00 30.00

Gly11 0.87 30.00 56.67 20.00

Gly12 6.18 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Gly13 30.00 56.67 20.00

Gly14 3.06 30.00 56.67 20.00

PPP1 8.46

PPP2 8.46

PPP3 8.46

PPP4 3.59

PPP5 4.86

PPP6 2.64

PPP7 2.64

PPP8 2.22

TCA1 2.28

TCA2 2.28

TCA3 2.28

TCA4 1.12

TCA5 1.12

TCA6 1.12

TCA7

TCA8 1.12

TCA9 1.12

DiPyr1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 20.00 20.00 20.00 20.00

DiPyr2 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

DiPyr3 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Egy1 26.41 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Egy2 13.76 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Egy3 40.00 40.00 40.00 40.00

Egy4 1.12

Egy5 40.00 40.00 40.00 40.00

Egy6 35.96 26.67 26.67 26.67 26.67

Egy7 0.87 30.00 56.67 20.00

Egy8 30.00 56.67 20.00

Growth 1.05

Note: Solution 1 for cases 2 and 3 are obtained by means of FBA; for the resultant net reaction balance equation of each case, see Table 4.
aCase 1: maximization of biomass production.
bCase 2: maximization of acetate production.
cCase 3: maximization of ethanol production.
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5.4. Maximization of ethanol production

For this third case (maximization of ethanol produc-
tion), in addition to the constraint that the glucose
availability is limited, the anaerobic condition is
imposed (see Table 4). The objective function to be
maximized in FBA is the ethanol production which can
be achieved through the dissimilation of pyruvate
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Fig. 5. Normalized flux distributions for (a) the maximum biomass production, (b) maximum acetate production, and (c) maximum ethanol

production of E. coli on glucose as the substrate: The thickness of arrows is proportional to the value of normalized flux; in the case of (a) the

maximum biomass production, the theoretic maximum biomass yield of 0.105 g DCW/mmol glucose is achieved during the growth on glucose; the

resultant flux distribution gives rise to the net reaction balance, GLCxt+0.39PIxt+1.376O2xt-0.105Biomass+1.498CO2xt, which is transformed

into overall reaction, 58610GLCxt+80667O2xt+22866PIxt-87774CO2xt+6180BIOMASS, by multiplying the coefficients by their LCD; and for

detail, see the text, Tables 4 and 5.

Fig. 6. P-graph representation of the glycolytic pathway, pentose phosphate pathway, TCA cycle and dissimilation of pyruvate in the E. coli model:

this P-graph can be combined with other pathways of the model, which, in turn, serves as the input to algorithm RPIMSG for generating the

maximal metabolic reaction network.
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ARTICLE IN PRESS

Fig. 7. Normalized multiple flux distributions for the maximum ethanol production: The thickness of the arrows is proportional to the value of

normalized flux; there exist the four different flux distributions, (a), (b), (c) and (d), each leading to the same external state, i.e., the net reaction

balance, GLCxt-2 ETHxt+2 CO2xt; and the values of fluxes in each distributions are given in Table 5.

D.-Y. Lee et al. / Metabolic Engineering 7 (2005) 182–200196
initiated by its conversion into acetyl-CoA through
reaction Gly12 (see Fig. 4). The theoretical maximum
ethanol production rate of 20mmol/g DCWh has been
obtained in the absence of cell growth. The resultant flux
distribution given in Table 5 leads to the net reaction
balance listed in Table 4. Fig. 5c exhibits the flux
distribution normalized by the glucose uptake rate of
10mmol/g DCWh, thus resulting in the overall reaction,

GLCxt ! 2ETHxtþ 2CO2xt,

which represents the external state.
Based on the above overall reaction, four feasible

metabolic pathways have been recovered via algorithms
RPIMSG and PBT for MPI from the metabolic reactions
in the E. coli network model. Subsequently, the
corresponding 4 flux distributions, illustrated in Fig. 7,
are obtained through the FBA of each of the 4 feasible
metabolic pathways. In the figure, note that the fluxes are
distributed mainly through the glycolytic pathway in all
the metabolic pathways; however, they involve distinctly
different bypasses through the pathway.
6. Discussion

6.1. Stoichiometric numbers and parameter-independent

metabolic fluxes

For the three conditions, i.e., the nutritionally rich
growth, slightly anaerobic and anaerobic conditions,
considered, the third phase of the proposed approach has
yielded the fluxes of the metabolic reactions belonging to
every feasible metabolic pathway in the MFD; and the
second phase, the stoichiometric numbers of these
metabolic reactions. Moreover, it has been demonstrated
unequivocally that if normalized with the smallest
substrate intake and rendered integers by resorting to
their LCD, the fluxes are identical to the stoichiometric
numbers provided that each stoichiometric number is
regarded as positive for each forward direction and
negative for each reverse reaction (see the simple
example). This obviously implies that the third phase of
the proposed approach, i.e., the identification of MFD
corresponding to the MMP identified by MPI in the
second phase, is indeed redundant: The stoichiometric
numbers of metabolic reactions in each pathway recov-
ered in the second phase can be taken as the parameter-
independent metabolic fluxes through the pathway.
Naturally, the normalized fluxes can be recovered from
the stoichiometric numbers that, in turn, give rises to the
corresponding dimensional fluxes for any specific sub-
strate intake rate. This renders it possible and meaningful
to systematically generate the stoichiometric numbers of
MMP as the multiple MFD in the parameter independent
form from the available metabolic reaction databases for
various microorganisms under wide ranging environ-
mental conditions. As clearly articulated by several
researchers (Lee et al., 2000; Papin et al., 2002;
Phalakornkule et al., 2001; Mahadevan and Schilling,
2003), these MMP and the associated MFD have
practical implication or utilities besides their obvious
theoretical significance. Eventually, they can be organized
as a library for broad dissemination. Some of the
available metabolic reaction databases are: BioSilico
(http://biosilico.kaist.ac.kr/), BRENDA (http://www.
brenda.uni-koeln.de/), ENZYME (http://us.expasy.org/

http://biosilico.kaist.ac.kr/
http://www.brenda.uni-koeln.de/
http://www.brenda.uni-koeln.de/
http://us.expasy.org/enzyme/
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enzyme/), LIGAND (http://www.genome.ad.jp/ligand/),
EcoCyc (http://www.ecocyc.org/) and MetaCyc (http://
www.metacyc.org/).

6.2. Computational efficacy

The proposed approach appears to be an alternative to
the two well-known approaches (Schilling et al., 2000;
Schuster et al., 2000) for identifying a complete set of
feasible metabolic pathways (MMP) and the concomitant
flux distributions (MFD), which give rise to a unique
overall reaction representing an external state. These two
approaches are the extreme pathways analysis (Schilling
et al., 2000) and the elementary mode analysis (Schuster
et al., 2000), both of which are based on the convex
analysis involving iterative operations of linear algebra.
The former identifies all extreme pathways; and the latter,
all elementary flux modes. Thus, each generates a
complete set of feasible metabolic pathways together
with the associated flux distributions for a multitude
of the overall reactions representing various external
states.

Any algorithm involving the enumeration of all
feasible and independent pathways of a network tends
to encounter difficulty due to the combinatorial explo-
sion referred to as an NP-hard problem where the
complexity is exponential in nature (Mavrovouniotis,
1995; Schilling et al., 2001; Klamt and Stelling, 2002;
Schuster et al., 2002). In this regard, Schilling et al.
(2001) state: ‘‘y as the size of the network increases in a
linear fashion, the time to calculate the extreme path-
ways as well as the number of pathways increases in an
exponential fashion.’’ Moreover, according to Schuster
et al. (2002), ‘‘y an elementary flux mode is a minimal
set of enzymes that can operate at steady state with all
irreversible reactions proceeding in the appropriate
direction. In complex and dense networks, the computa-
tion of elementary modes often meets with the problem
of combinatorial explosion.’’ To cope with the difficulty
due to this combinatorial explosion, the decomposition
algorithm for metabolic networks based on the local
connectivity of metabolites (Schuster et al., 2002) and
the optimized algorithm in terms of speed, memory
requirement and numerical stability (Klamt et al., 2003)
have been developed. In our proposed approach, the
difficulty in solving the combinatorial explosion pro-
blem can also be overcome by the profound reduction in
the space in which at most the combinatorially feasible
pathways are searched even in the worst case. This is
partly accomplished by eliminating metabolic reactions
which cannot be contained in any of such pathways
through the construction of the maximal metabolic
reaction network with the aid of algorithm RPIMSG at
the outset of the graph-theoretic pathway identification.
This algorithm is an exact polynomial algorithm (Fan et
al., 1999, 2001, 2002; Friedler et al., 1993).
The proposed approach’s computational efficacy is
also partly attributable to the fact that the final selection
of the feasible metabolic pathways directly from the
maximal reaction network by algorithm PBT is im-
measurably accelerated by means of a unique branch-
and-bound scheme. A traditional implicit enumeration
procedure highly likely generates an enormous number
of redundant combinations. The number of combina-
tions, however, can be significantly reduced by resorting
to an axiom system expressing the obvious combinator-
ial properties inherent in feasible metabolic pathways.
This scheme exploits the structural features of feasible
metabolic reaction networks as expressed by axioms
T1–T7.

In the simple example, only 3 pathways are combi-
natorially feasible among (34 � 23�1), or 647, possible
pathways from the 4 reversible and 3 irreversible
reactions. For the third case (maximization of ethanol
production) of the E. coli model, only 236 pathways are
combinatorially feasible among (325 � 223�1) possible
combinations from the 25 reversible and 23 irreversible
reactions; this number is merely 0.0001% of the total
number of possible networks. Note that eliminating the
majority, e.g., 99%, of infeasible or redundant pathways
to accelerate the search by many orders of magnitude
can hardly be achieved by any conventional Mixed
Integer Programming (MIP) method. The computa-
tional efficacy of our approach is amply reflected in the
computational time of less than 1 s with a PC (Intel
Pentium IV, 1.8GHz, 768 MB RAM) to obtain the
results for each of the 3 cases (see Table 1).

6.3. Large-size application and cell robustness

The unified approach proposed is applied to problems
of maximal production of various metabolic products by
E. coli based on its large-scale model involving as many
as 300 metabolic reactions. The preliminary results
obtained unequivocally indicate that problems of even
such complexity are amenable to the proposed approach
when implemented on a PC of modest capacity, e.g., the
one adopted in the current work. In fact, the approach
has given rise to hundreds or thousands of MMP under
various culture conditions. This pathway redundancy
implies cell robustness which is a unique feature of
complex systems (Carlson and Doyle, 2002; Stelling
et al., 2002): the network function can be sustained
towards some internal disturbances, e.g., gene mutations
by possibly redistributing fluxes through one of the
MMP. Details will be presented in our forthcoming
contribution.

The computing efficiency of the proposed approach
can be further enhanced by means of parallel or grid
computing. Algorithm PBT preserves the useful prop-
erty of conventional branch-and-bound of being suita-
ble for parallel implementation. Specifically, all

http://us.expasy.org/enzyme/
http://www.genome.ad.jp/ligand/
http://www.ecocyc.org/
http://www.metacyc.org/
http://www.metacyc.org/


ARTICLE IN PRESS
D.-Y. Lee et al. / Metabolic Engineering 7 (2005) 182–200198
subproblems in the branches of an enumeration tree in
algorithm PBT can be divided to generate a master-slave
architecture (Varga et al., 1995); subsequently, they can
be solved separately in the multi-processor or parallel
computing environment. The resulting computing
scheme or system can be promising for the analysis of
the genome-wide networks with more than 1000
metabolic reactions and 700 metabolites. This would
facilitate the discovery of antimicrobial drug targets that
are essential for the growth or survival of a pathogen
satisfying the principle of selective toxicity.

Conventionally, drug targets are identified by com-
parative analysis of a host (i.e., human cell) and the
microbial pathogen on the metabolic pathway maps,
where enzymes unique to the pathogen are regarded as
potential drug targets: inactivating those enzymes may
selectively threaten the pathogen without harm to the
host (Fairlamb, 2002; Karp et al., 1999; Lindroos and
Andersson, 2002). The existence of multiple pathways or
flux distributions, however, implies that their ‘‘back-up’’
pathways may possibly be activated to perform the same
function even though some potential drug-target enzymes
identified are disrupted under certain environmental
conditions in the cell. Such fault-tolerance or robustness
may be a key to cell survival against environmental or
genetic change. Thus, inactivating common enzymes
among the drug targets involved in MMP may attenuate
the cellular function, thereby killing the pathogen. In this
regard, the proposed approach would provide novel
insight into drug discovery.
7. Concluding remarks

The current work proposes a computationally effi-
cient approach for identifying MMP and the concomi-
tant MFD. These MMP or MFD attain a unique
phenotypic state whose manifestation is the overall
reaction. Nevertheless, the final identification of a valid
flux distribution among the different distributions must
await experimental verification by means of various
methods, e.g., an isotopic tracer method with nuclear
magnetic resonance (NMR) spectroscopy and/or gas
chromatography-mass spectrometry (GC-MS). The ap-
proach would serve as an alternative to the methods
based on convex analysis adopted in most, if not all, of
the available approaches. The unified approach pro-
posed complementarily identifies MMP and MFD by
judiciously integrating FBA based on LP and the graph-
theoretic method for reaction-pathway identification.
The results from the application of the unified approach
proposed to the E. coli model demonstrate its profound
efficiency and efficacy and reveal that the stoichiometric
numbers of metabolic reactions are identical to the
parameter-independent metabolic fluxes. The computa-
tional efficacy of the proposed unified approach is
mainly attributable to the fact that it resorts to the
P-graph. The P-graph, a unique bipartite graph,
together with the representation of the structure of any
material or molecular transformation network obeying
the laws of mass conservation and/or stiochiometry,
e.g., metabolic pathway, renders it possible to capture
the syntactic and semantic contents of the network and
to craft a set of axiomatic statements depicting the
network’s structure. Such axiomatic statements have
naturally given rise to a set of three highly compact and
efficient algorithms. The computational efficacy of the
proposed unified approach has been ascertained by
successfully extending its application to the E. coli

models involving 300 and 700 metabolic reactions, the
results which will be in our forthcoming contributions.
The resultant MMP and MFD attaining a unique
external state imply the surprising adaptability and
robustness of the intricate cellular network as a key to
cell survival against environmental or genetic change. It
is highly plausible that the approach proposed herein is
applicable to drug discovery.
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